Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{2n+3}{n+1}=\frac{2n+2+1}{n+1}=\frac{2.\left(n+1\right)+1}{n+1}\)=\(2+\frac{1}{n+1}\)
A có giá trị lớp nhất \(\Leftrightarrow\frac{1}{n+1}\)có giá trị lớn nhất
Xét \(\frac{1}{n+1}\)
Với n < -1\(\Rightarrow n+1< 0\)
\(\Rightarrow\frac{1}{n+1}< 0\)(1)
Với n > -1 \(\Rightarrow n+1>0\)
\(\Rightarrow\frac{1}{n+1}>0\)
Phân số \(\frac{1}{n+1}\)có tử và mẫu đều lớn hơn 0 nên \(\frac{1}{n+1}\)có giá trị lớn nhất \(\Leftrightarrow n+1\)có giá trị nhỏ nhất
mà n+1 >0
\(\Rightarrow n+1=1\)
\(\Rightarrow n=0\)
Khi đó \(\frac{1}{n+1}=1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{n+1}\)có giá trị lớn nhất là 1
Vậy MAX A= 1+2=3 \(\Leftrightarrow n=0\)
a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên thì 2n+3 \(⋮\) 4n+1
Ta có 2n+3 \(⋮\)4n+1
=> 4n+6 \(⋮\)4n+1
=> (4n+1)+5 \(⋮\)4n+1
=> 5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }
Ta có bảng :
4n+1 | -1 | -5 | 1 | 5 |
4n | -2 | -6 | 0 | 4 |
n | không có | không có | 0 | 1 |
Mà n \(\in\)N
+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)
+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )
Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
b, Gọi d \(\in\)UC(2n+3;4n+1)
Ta có 2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d
4n+1 \(⋮\)d
Suy ra 2(2n+3) - (4n+1) \(⋮\)d
4n+6 - 4n+1 \(⋮\)d
5 \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }
+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5
(5n+5).(n+4) \(⋮\)5
n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)
Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5
Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản
1, A=\(\frac{2n+3}{\text{4n + 1}}\)
A=\(\frac{4n+6}{\text{4n + 1}}\)
A=\(\frac{4n+1+5}{\text{4n + 1}}\)
A=1+\(\frac{5}{\text{4n + 1}}\)
Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.
Vậy n\(\in\){0;1} thì A là số tự nhiên
\(M=\frac{5n+17}{4n+13}=\frac{4n+13+n+4}{4n+13}=1+\frac{n+4}{4n+13}\)
Để M đạt GTLN thì \(\frac{n+4}{4n+13}\)Đạt GTLN \(\Rightarrow4n+13\) đạt GTNN dương
Ta có : \(4n+13=1\)
\(\Leftrightarrow4n=-12\)\(\Rightarrow n=-3\)
Vậy M đạt GTLN = 2 khi n=-3
Lời giải:
$\frac{2n+1}{n-2}=\frac{2(n-2)+5}{n-2}=2+\frac{5}{n-2}$
Để phân số có giá trị lớn nhất thì $\frac{5}{n-2}$ có giá trị lớn nhất.
Điều này xảy ra khi $n-2>0$ và $n-2$ nhỏ nhất
$\Rightarrow n-2=1$
$\Rightarrow n=3$