Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI ĐỌC ĐƯỢC NÓ LÀM ƠN GIÚP MÌNH VỚI MÌNH ĐANG CẦN RẤT GẤP
CẢM ƠN TRƯỚC NHA
\(n^2+83n+2009\)là số chính phương thì \(4\cdot\left(n^2+83n+2009\right)\)cũng là số chính phương và ta đặt là \(p^2\)p nguyên.
\(p^2=4n^2+2\cdot2n\cdot83+83^2+4\cdot2009-83^2=\left(2n+83\right)^2+1147\)
\(\Leftrightarrow p^2-\left(2n+83\right)^2=1147\)
\(\Leftrightarrow\left(p-\left(2n+83\right)\right)\left(p+\left(2n+83\right)\right)=1147\)(1)
Suy ra \(p+2n+83\)là ước nguyên dương của 1147. Mà U+(1147) = {1;31;37;1147} nên
\(p+2n+83=1147\)
\(p-\left(2n+83\right)=1\)
=> \(2n+83=573\Rightarrow n=245\)
Kết luận, với n=245 thì \(n^2+83n+2009\)là số chính phương 2872.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!
n2 + 404 = a2
(a - n) . (a + n) = 404 = 2 . 202 = 202 . 2
a - n = 2 ; a + n = 202 => a = 102 ; n = 100 (chọn)
(-) a - n = 202 ; a + n = 2 => a = 102 ; n = -100 (loại)
Vậy n = 100