Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=12n^2-5n-25\)
\(=12n^2+15n-20n-25\)
\(=3n\left(4n+5\right)-5\left(4n+5\right)\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó
nên A là số nguyên tố thì: \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)
do n là số tự nhiên nên \(n=2\)
thử lại: n=2 thì A = 13 là số nguyên tố
Vậy n = 2
b) \(B=8n^2+10n+3\)
\(=8n+6n+4n+3\)
\(=2n\left(4n+3\right)+\left(4n+3\right)\)
\(=\left(2n+1\right)\left(4n+3\right)\)
Để B là số nguyên tố thì: \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)
Do n là số tự nhiên nên n = 0
Thử lại: \(n=0\)thì \(B=3\)là số nguyên tố
Vậy \(n=0\)
ta có:
n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48
=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)
=> n2+2 thuộc Ư(48) = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48} (n2+2 luôn dương)
=> n2 = {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }
mà A có giá trị nguyên nên n2 = {0; 1; 4}
=> n = {0; ±1; ±2}
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Khi 8n+198 chia heetscho 4n+3
ta có \(\frac{8n+198}{4n+3}=\frac{8n+6+192}{4n+3}=\frac{2\left(4n+3\right)+192}{4n+3}\)
\(=2+\frac{192}{4n+3}\)
\(8n+198⋮4n+3\) khi 4n+3 thuộc Ư(187).....
Để n nguyên thì n\(\varepsilon Z\)