K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|3x+1|+|3x-5|=|3x+1|+|5-3x|\geq |3x+1+5-3x|=6$

$(y+3)^2+2\geq 2, \forall y\Rightarrow \frac{12}{(y+3)^2+2}\leq \frac{12}{2}=6$

Vậy:

$|3x+1|+|3x-5|\geq 6\geq \frac{12}{(y+3)^2+2}$
Dấu "=" xảy ra (3x+1)(5-3x)\geq 0$ và $y+3=0$

$\Leftrightarrow \frac{-1}{3}\leq x\leq \frac{5}{3}$ và $y=-3$

1 tháng 11 2020

\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)

Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)

3 tháng 3 2019

Ta có: \(\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)(1)

\(\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)(2)

\(\left(1\right);\left(2\right)\Rightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)

11 tháng 3 2019

Thanks bn nha !! Nka

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

5 tháng 8 2019

Làm đầy đủ hộ mình, mai nộp rùi

5 tháng 8 2019

a) \(5^{3x+1}=25^{x+2}\)

\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)

\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)

\(\Leftrightarrow3x+1=2x+4\)

\(\Leftrightarrow3x-2x=4-1\)

\(\Leftrightarrow x=3\)

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................