Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\) < \(\dfrac{800}{-50}\)
\(x\) < -16
Vì số nguyên lớn nhất nhỏ hơn - 16 là -17 nên \(x=-17\)
Vậy \(x=-17\)
\(x\) < \(\dfrac{-533}{41}\)
\(x\) < -13
Vì số nguyên lớn nhất nhỏ hơn - 13 là - 14
nên \(x\) là -14
Vậy \(x=-14\)
Ta có \(x< -13:3\)
Suy ra \(x< -4,3\)(làm tròn thương )
Mặt khác x là số nguyên lớn nhất nên x = -5
Vậy x= -5
Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!
1. a, để a+b lớn nhất thì a, b phải lớn nhất
mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999
suy ra a+b lớn nhất là 9999+9999=(tự tính)
b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)
hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.
2. số nguyên âm lớn nhất là -1
Mà x+2019 là số nguyên âm lớn nhất suy ra x+2019=-1
tiếp theo tự tính
3.hướng dẫn
b, \(\left|x-28\right|+7=15\)
\(\Rightarrow\left|x-28\right|=8\)
\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)
vậy.........................
4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)
a.,,\(\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)
Vậy....
b, \(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Vậy.....................
c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)
(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)
Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)
khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm
giải:
Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu
Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)
Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
Làm tắt tí hi vọng bạn hiểu!