Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{4x-11}{x-3}\)= \(\frac{4\left(x-3\right)+1}{x-3}\)= 4 + \(\frac{1}{x-3}\)
Để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
Để \(\frac{1}{x-3}\)có giá trị nhỏ nhất thì x-3 có giá trị lớn nhất
ta có:\(A=\frac{4x-11}{x-3}=\frac{4\left(x-3\right)+1}{x-3}=4+\frac{1}{x-3}\)
để A có giá trị nhỏ nhất thì \(\frac{1}{x-3}\)có giá trị nhỏ nhất
\(\Leftrightarrow\)\(x-3\)có giá trị lớn nhất
A = \(\dfrac{22-3x}{4-x}\)
A = \(\dfrac{3.\left(4-x\right)+10}{4-x}\)
A = 3 + \(\dfrac{10}{4-x}\)
A lớn nhất khi \(\dfrac{10}{4-x}\) lớn nhất. Vì 10 > 0; \(x\) \(\in\) Z nên \(\dfrac{10}{4-x}\) lớn nhất khi
4 - \(x\) = 1 ⇒ \(x\) = 4 - 1 ⇒ \(x\) = 3
Vậy Amin = 3 + \(\dfrac{10}{1}\) = 13 khi \(x\) =3
Kết luận giái trị lớn nhất của biểu thức là 13 xảy ra khi \(x\) = 3
(14-x)/(4-x)
TH1:14-x=0 TH2:4-x=0
x+14-0=14 x=4-0=4
vì 14>4 => x=4 là giá trị nhỏ nhất
\(A=|x-2012|+|x-2013|=|x-2012|+|2013-x|\ge|x-2012+2013-x|=1\)
Dấu = xảy ra \(< =>2012\le x\le2013\)
\(|x-2012|+|x-2013|\)
\(=|x-2012|+|-\left(2013-x\right)|\)
\(=|x-2012|+|2013-x|\)
Ta có
\(|x-2012|+|2013-x|\ge|x-2012+2013-x|\)
\(|x-2012|+|2013-x|\ge1\)
Dấu = xảy ra
\(\Leftrightarrow\left(x-2012\right)\left(2013-x\right)\ge0\)
TH 1 :
\(\hept{\begin{cases}x-2012\ge0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\-x\ge-2013\end{cases}}\)
\(\hept{\begin{cases}x\ge2012\\x\le2013\end{cases}}\) \(\Rightarrow2012\le x\le2013\)
TH 2
\(\hept{\begin{cases}x-2012\le0\\2013-x\le0\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\-x\le-2013\end{cases}}\)
\(\hept{\begin{cases}x\le2012\\x\ge2013\end{cases}}\) \(\Rightarrow x=\varnothing\)
Vậy min A = 1 khi và chỉ khi \(2012\le x\le2013\)
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)
\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)
Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)
Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)
Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)
Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)
Vậy GTNN của A là 4 khi và chỉ khi \(-7\le x\le3\)
Lời giải:
$M=\frac{2022x-2021}{3x+2}=\frac{674(3x+2)-3369}{3x+2}$
$=674-\frac{3369}{3x+2}$
Để $M$ nhỏ nhất thì $\frac{3369}{3x+2}$ lớn nhất
Điều này xảy ra khi $3x+2$ là số nguyên dương nhỏ nhất.
Với $x$ nguyên thì $3x+2$ là số nguyên dương nhỏ nhất khi $3x+2=2$
$\Leftrightarrow x=0$
Ta có A=x - 3 - 5/x - 3
A=x - 3/x - 3 - 5/x - 3
A=1 - 5/x - 3
Đẻ A đạt giá trị nhỏ nhất<=>1 - 5/x - 3 cũng phải đạt giá trị nhỏ nhất
Mà 1>0=>để A đạt giá trị nhỏ nhất=>5/x - 3 phải lớn nhất nguyên dương
=>x - 3 phải là số bé nhất nguyên dương=1
Ta có:x - 3=1
x=1+3=4