Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số p4 có 5 ước số tự nhiên là 1 , p, p2 , p3 , p4
Ta có : 1 + p + p2 + p3 + p4 = n2 (n \(∈\) N)
Suy ra : 4n2 = 4p4 + 4p3 + 4p2 + 4p + 4 > 4p4 + 4p3 + p2 = (2p2 + p)2
Và 4n2 < 4p4 + p2 + 4 + 4p3 + 8p2 + 4p = (2p2 + p + 2)2.
Vậy : (2p2 + p)2 < (2n)2 < (2p2 + p + 2)2.
Suy ra :(2n)2 = (2p2 + p + 2)2 = 4p4 + 4p3 +5p2 + 2p + 1
Vậy 4p4 + 4p3 +5p2 + 2p + 1 = 4p4 + 4p3 +4p2 +4p + 4 (vì cùng bằng 4n2 )
=> p2 - 2p - 3 = 0
=> (p + 1) (p - 3) = 0
do p > 1 => p - 3 = 0 => p = 3 (tm)
Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)
\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)
\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)
Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)
\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)
\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)
Vì \(p\)là số nguyên tổ nên tổng các ước nguyên dương của \(p^4\)là \(1+p+p^2+p^3+p^4\).
Đặt \(p^4+p^3+p^2+p+1=n^2\)
\(\Leftrightarrow4p^4+4p^3+4p^2+4p+1=4n^2\)
Ta có:
\(4p^4+4p^3+4p^2+4p+4>4p^4+4p^3+p^2=\left(2p^2+p\right)^2\)
\(4p^4+4p^3+4p^2+4p+4< 4p^4+4p^3+9p^2+4p+4=\left(2p^2+p+2\right)^2\)
Suy ra \(\left(2p^2+p\right)^2< 4n^2< \left(2p^2+p+2\right)^2\)
\(\Rightarrow\left(2n\right)^2=\left(2p^2+p+1\right)^2=4p^4+4p^3+5p^2+2p+1\)
\(\Rightarrow p^2-2p-3=0\)
\(\Leftrightarrow\left(p+1\right)\left(p-3\right)=0\)
\(\Rightarrow p=3\)thỏa mãn.
Vậy \(p=3\).
chồi e mới lớp 6
e mà làm đc bài này chắc e đã là thần đồng đất việt rùi
Đặt \(p^2+pq+q^2=a^2\) \(\left(a\inℤ\right)\)
\(\Leftrightarrow\left(p+q\right)^2-pq=a^2\)
\(\Leftrightarrow\left(p+q\right)^2-a^2=pq\)
\(\Leftrightarrow\left(p+q-a\right)\left(p+q+a\right)=pq\)
Xong chắc xét các TH với p,q là số nguyên tố
Gợi ý:
Tổng các ước dương của p4p4 là : p4+p3+p2+p+1p4+p3+p2+p+1
Theo đề ra thì: p4+p3+p2+p+1=n2(n∈Np4+p3+p2+p+1=n2(n∈N
Để ý rằng: (2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1(2p2+p)2<(2n)2<(2p2+p+2)2→2n=2p2+p+1
Đến đây đơn giản rồi nhé !
___
NLT
k nha
bn k đi mk giải cho