K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 1 2019

- Với \(p=2\Rightarrow4-2q^2=1\Rightarrow2q^2=3\) (vô nghiệm). Vậy \(p>2\)

Ta có \(p^2-2q^2=1\Leftrightarrow p^2-1=2q^2\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)

Do \(p>2\) và p là số nguyên tố \(\Rightarrow p-1\)\(p+1\) là các số chẵn

\(\Rightarrow\left(p+1\right)\left(p-1\right)⋮4\Rightarrow\left(p-1\right)\left(p+1\right)=4k\)

\(\Rightarrow2q^2=4k\Rightarrow q^2=2k\)

\(\Rightarrow q\) là số chẵn \(\Rightarrow q=2\Rightarrow p=3\)

Vậy chỉ có duy nhất cặp số nguyên tố \(\left(p;q\right)=\left(3;2\right)\) thỏa mãn bài toán.

21 tháng 6 2015

làm rồi thì làm đi Đinh Tuấn Việt

18 tháng 12 2017

Ta có:

\(p^2-2q^2=1\Rightarrow p^2=2q^2\)mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)

Ta có: 

\(\left(2k+1\right)^2=2q^2+1\Rightarrow q^2+1=2k\left(k+1\right)\Rightarrow q=2\)(vì q là số nguyên tố) tìm được p = 3

Vậy: \(\left(p;q\right)\in\left\{3;2\right\}\)

9 tháng 8 2020

\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ

=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20

=> q chẵn mà q là số nguyên tối nên q=2

=> p2=49 => p=7

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

22 tháng 8 2016

Số đó là : 3 

Thay vào : \(2^3+3^2=17\)

22 tháng 8 2016

Nhiều số hay 1 số  z 

  • Uchiha Itachi
9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

21 tháng 2 2022

Ta có:

p2−2q2=1⇒p2=2q2p2−2q2=1⇒p2=2q2mà p lẻ. Đặt p = 2k + 1 (k là số tự nhiên)

Ta có: 

(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(2k+1)2=2q2+1⇒q2+1=2k(k+1)⇒q=2(vì q là số nguyên tố) tìm được p = 3

Vậy: (p;q)∈{3;2}

21 tháng 2 2022

chứng minh với mọi số nguyên dương n thì 3^n+1+4^n+2021^n không phải là số chính phương