Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sư 3 số đó là 2;3;5
=> p2 + q2 +r2 =38 không phải số nguyên tố(loại)
xét 3 số đó là 3;5;7
=> p2 + q2 +r2 =83 là số nguyên tố(chọn)
xét 3 số đó không chia hết cho 3
=>p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3(loại)
vậy 3 số cần tìm là 3;5;7
Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1
Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿
Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿
Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại
vì không có số chính phương nào chia 3 dư 2
Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn
Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.
Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7
Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿
Vậy 3 số nguyên tố cần tìm là 3 5 7
Ta có : p<q<r
- Xét p = 2, tìm được 3 số : 2 ; 3 ; 5 (ktm)
- Xét p = 3, tìm được 3 số : 3 ; 5 ; 7 (tm)
- Xét p > 3 :
Vì mõi số nguyên tố >3 có bình phương luôn có dạng : 3k + 1 ; 3k + 2
+) Nếu có dạng 3k+1,ta có: (3k + 1)2 = 9k2 + 6k + 1\(\equiv\)1(mod3)
+) Nếu có dạng 3k+2 ,ta có: (3k + 2)2 = 9k2 + 12k + 4\(\equiv\)1 (mod3)
Nếu p > 3 thì p,q,r > 3 nên bình phương của chúng đều dư 1
\(\Rightarrow\)p2 + q2 + r2 \(\equiv\)0 (mod 3)
\(\Rightarrow\)p2 + q2 + r2 (p,q,r > 3) \(⋮\)3 (loại)
Vậy 3 số nguyên tố liên tiếp đó là : 3 ; 5 ; 7
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
Vì \(p^2;q^2\)là số chính phương
=> \(p^2;q^2\)chia 5 luôn dư 0,1,4
Mà 886 chia 5 dư 1
=> p^2 chia hết cho 5 , q^2 chia 5 dư 1 và ngược lại
Mà p là số nguyên tố
nên \(p=5\)=> \(q=29\)thỏa mãn q là số nguyên tố
Vậy \(\left(p,q\right)=\left(5;29\right),\left(29;5\right)\)
Ta có \(p^2+q^2=866\)
=> \(p^2;q^2\) cùng lẻ hoặc cùng chẵn
Vì p, q là hai số nguyên tố
=> \(p^2;q^2\)cùng lẻ
Ta lại có: \(p^2+q^2=866\)có chữ số tận cùng là 6
Không mất tính tổng quát : G/s chữ số tận cùng của \(p^2\) lớn hơn hoặc bằng chữ số tận cùng của \(q^2\)
TH1: \(q^2\) có chữ số tận cùng là 1 ; \(p^2\) có chữ số tận cùng là 5
=> \(p^2\) chia hết cho 5 => \(p⋮5\)
=> p=5 => \(p^2=25\Rightarrow25+q^2=866\Rightarrow q^2=841=29^2\Rightarrow q=29\)
=> \(p=5;q=29\) thỏa mãn
TH2: \(q^2\) có chữ số tận cùng là 3 ; \(p^2\) có chữ số tận cùng là 3
Trường hợp này loại vì tận cùng của một số chính phương không thể là số 3
TH3: \(q^2\) có chữ số tận cùng là 7; \(p^2\) có chữ số tận cùng là 9
Trường hợp này loại vì tận cùng của một số chính phương không thể là số 7
Kết luận : p=5; q=29 hoặc p=29;q=5
p=5
q=1