K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

Vì \(p^2;q^2\)là số chính phương 

=> \(p^2;q^2\)chia 5 luôn dư 0,1,4

Mà 886 chia 5 dư 1

=> p^2 chia hết cho 5 , q^2 chia 5 dư 1 và ngược lại

Mà p là số nguyên tố

nên \(p=5\)=> \(q=29\)thỏa mãn q là số nguyên tố 

Vậy \(\left(p,q\right)=\left(5;29\right),\left(29;5\right)\)

11 tháng 7 2019

Ta có \(p^2+q^2=866\)

=> \(p^2;q^2\) cùng lẻ hoặc cùng chẵn

Vì p, q là hai số nguyên tố

=> \(p^2;q^2\)cùng lẻ

Ta lại có:  \(p^2+q^2=866\)có chữ số tận cùng là 6

Không mất tính tổng quát : G/s chữ số tận cùng của \(p^2\) lớn hơn hoặc bằng chữ số tận cùng của \(q^2\)

TH1: \(q^2\) có chữ số tận cùng là 1 ; \(p^2\) có chữ số tận cùng là 5

=> \(p^2\) chia hết cho 5 => \(p⋮5\)

=> p=5 => \(p^2=25\Rightarrow25+q^2=866\Rightarrow q^2=841=29^2\Rightarrow q=29\)

=> \(p=5;q=29\) thỏa mãn

TH2:  \(q^2\) có chữ số tận cùng là 3 ; \(p^2\) có chữ số tận cùng là 3 

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 3

TH3:  \(q^2\) có chữ số tận cùng là 7; \(p^2\) có chữ số tận cùng là 9

Trường hợp này loại vì tận cùng của một số chính phương không thể là số 7

Kết luận : p=5; q=29 hoặc p=29;q=5 

4 tháng 11 2016

p=5

q=1

22 tháng 3 2017

 Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại

vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7

Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿

Vậy 3 số nguyên tố cần tìm là 3 5 7 

10 tháng 2 2021

Ta có : p<q<r

- Xét p = 2, tìm được 3 số : 2 ; 3 ; 5 (ktm)

- Xét p = 3, tìm được 3 số : 3 ; 5 ; 7 (tm)

- Xét p > 3 :

Vì mõi số nguyên tố >3 có bình phương luôn có dạng : 3k + 1 ; 3k + 2

+) Nếu có dạng 3k+1,ta có: (3k + 1)2 = 9k2 + 6k + 1\(\equiv\)1(mod3)

+) Nếu có dạng 3k+2 ,ta có: (3k + 2)= 9k2 + 12k + 4\(\equiv\)1 (mod3)

Nếu p > 3 thì p,q,r > 3 nên bình phương của chúng đều dư 1

\(\Rightarrow\)p2 + q2 + r2 \(\equiv\)0 (mod 3)  

\(\Rightarrow\)p2 + q2 + r2 (p,q,r > 3) \(⋮\)3 (loại)

Vậy 3 số nguyên tố liên tiếp đó là : 3 ; 5 ; 7

10 tháng 2 2021

- Vì p > q > r nên : p^2 + q^2 > 2

Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .

=> p^2 ; q^2 ; r^2 là các số lẻ

=> p ; q ; r là các số nguyên tố lẻ

- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)

=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )

= > q = 5 , r = 7

11 tháng 3 2016

p=3

q=5

r=7

27 tháng 12 2015

p=3

q=5

r=7