K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

\(p=3\Rightarrow2p^2+1=19\)

Nhẩm nhẩm một chút là ra đó bạn

Cái này lớp 6 chứ

21 tháng 5 2019

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

1 tháng 3 2020

Gửi bạn nhé, bài này mình đã làm rồi , chúc bạn học tốt !

p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn

-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài

- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí

-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí

Vậy p=7

24 tháng 3 2020

khó quá . mik dở phần số nguyên tố lắm.

24 tháng 3 2020

\(1,\text{Nếu p;q cùng lẻ thì:}7pq^2+p\text{ chẵn};q^3+43p^3+1\text{ lẻ}\Rightarrow\text{có ít nhất 1 số chẵn}\)

\(+,p=2\Rightarrow14q^2+2=q^3+345\Leftrightarrow14q^2=q^3+343\)

\(\Leftrightarrow q^2\left(14-q\right)=343\text{ đến đây thì :))}\)

\(+,q=2\Rightarrow29p=9+43p^3\Leftrightarrow29p-43p^3=9\text{loại}\)

\(+,p=q=2\Rightarrow7.8+2=8+43.8+1\left(\text{loại}\right)\)

5 tháng 11 2015

s2 Lắc Lư s2 vào câu hỏi tương tự có đó

5 tháng 11 2015

Hoàng Anh Tú tám đâu 

9 tháng 6 2016

Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại

+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn

+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)

=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3

Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.

Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3

Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại

Vậy n = 3

Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)

Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8

Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5

16 tháng 3 2019

Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp

Bạn tham khảo

17 tháng 3 2019

Bạn giải ra luôn được không

4 tháng 12 2017

ta có : 2018p \(\equiv\)2p (mod 3) 

Vì là SNT > 5 => p lẻ

=> 2p \(\equiv\)2 (mod 3)

2017q \(\equiv\)1 (mod 3)

=> 2018p - 2017q \(\equiv\)2 - 1 = 1 (mod 3)

Vậy 2018p - 2017q chia 3 dư 1

b) xét số dư khi chia p cho 3 => p có 2 dạng 3k + 1 hoặc 3k + 2

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)2 (mod 3) ; 7p \(\equiv\)1 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

+ p = 3k + 1 => 3p5 \(⋮\)3 ; 5p3 \(\equiv\)1(mod 3) ; 7p \(\equiv\)2 (mod 3) => (3p5 + 5p3 + 7p ) \(⋮\)3

Vậy 3p5 + 5p3 + 7p \(⋮\)3 (1)

Xét số dư khi chia p cho 5 => p có 4 dạng 5k+1;5k+2;5k+3;5k+4

+ p = 5k + 1 => 3p5 \(\equiv\)3 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)7 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

 + p = 5k + 2 => 3p5 \(\equiv\)1 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)4 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5                                                                                                    

+ p = 5k + 3 => 3p5 \(\equiv\)4 (mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)1 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

+ p = 5k + 4 => 3p5 \(\equiv\) 2(mod 5) ; 5p3 \(⋮\) 5 ; 7p\(\equiv\)3 (mod 5) =>(3p5 + 5p3 + 7p ) \(⋮\)5

Vậy 3p5 + 5p3 + 7p \(⋮\)5 (2)

Từ (1) và (2) và (3;5) = 1 =>  3p5 + 5p3 + 7p \(⋮\)15 

=> \(\frac{3p^5+5p^3+7b}{15}\)là số nguyên (đpcm)

25 tháng 2 2021

* Xét p = 2 thì \(2^p+p^2=2^2+2^2=8\)(loại, không là số nguyên tố)

* Xét p = 3 thì \(2^p+p^2=2^3+3^2=17\)(là số nguyên tố)

* Xét p > 3 thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)⋮3\)(Do p lẻ nên \(2^p+1⋮3\)và p không chia hết cho 3 nên\(p^2-1⋮3\))

Lại có \(2^p+p^2>2^3+3^2=17>3\)nên không là số nguyên tố

Vậy p = 3 thì 2p + p2 là số nguyên tố

Note: trường hợp p > 3 còn có một cách nữa là sử dụng đồng dư

p là số nguyên tố lớn hơn 3 thì \(2^p\equiv2\left(mod3\right)\Rightarrow2^p\)chia 3 dư 2

Mặt khác p là số nguyên tố lẻ hên \(p^2\)chia 3 dư 1 suy ra \(2^p+p^2⋮3\)

Done!