Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n \(\in\)Z
4n - 5 + 1 \(⋮\)2n
4n là số chẵn nên chia hết cho 2
- 5 là số lẽ nên chia cho 2 dư 1
Vậy 4n - 5 + 1 chia hết cho 2 với mọi giá trị của n
mà 2n cũng là số chẵn
nên 4n - 5 \(⋮\)2n - 1 với mọi giá trị n
tìm n thuộc Z
a) 4n-5 chia hết cho (2n -1)
<=> 4n-2-3 chia hết (2n-1)
<=> 2(2n-1)-3 chia hết(2n-1)
=>-3 chia hết cho (2n-1)
=> 2n-1 =(-3,-1,1,3}
2n={-2,0,2,4}
n={-1,0,1,2}
b) tương tụ
8-n ước của 4={-4,-2-1,1,2,4}
n={12,10,9,7,6,4}
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
mik ko bt câu 1, 2 chỉ bt câu 3 thôi:
c)
- 3n+7 chia hết cho 2n+1
=> 2.(3n+7) chia hết cho 2n+1
=> 6n+14 chia hết cho 2n+1
- 2n+1 chia hết cho 2n+1
=> 3.(2n +1) chia hết cho 2n+1
=> 6n+3 chia hết cho 2n+1
Do đó: 6n+14 - (6n+3) chia hết cho 2n+1
=> 6n+14 - 6n - 3 chia hết cho 2n+1
=> ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 thuộc Ư (11) = { 1,11 }
Ta có bảng sau:
2n+1 | 1 | 11 |
n | 0 | 5 |
Vậy n thuộc { 0, 5 }
a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}
b)(2n+5)\(⋮n+2\)
2(n+2)+1 chia hết cho (n+2)
Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2
n+2=Ư(1)={1}
Lập bảng:
n+2 | 1 |
n | loại |
Vậy n=\(\varnothing\)
a) ta có: n - 7 chia hết cho n - 5
=> n - 5 - 2 chia hết cho n - 5
mà n -5 chia hết cho n - 5
=> 2 chia hết cho n - 5
=> n - 5 thuộc Ư(2)={1;-1;2-2}
...
rùi bn tự lập bảng xét giá trị nha
b) ta có: n^2 - 2n - 22 chia hết cho n + 3
=> n^2 + 3n - 5n - 15 - 7 chi hết cho n + 3
n.(n+3) - 5.(n+3) - 7 chia hết cho n + 3
(n+3).(n-5) - 7 chia hết cho n + 3
mà (n+3).(n-5) chia hết cho n + 3
=> 7 chia hết cho n + 3
=> ...
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
a) Nếu n + 4 chia hết cho n - 2 => n phải chia hết cho 4 hoặc -4
Xin lỗi, phần b mình chưa giải dc.
n+4=(n-2)+6 chia hết cho n-2 (vì n+4 chia hết cho n-2)
Mà n-2 chia hết cho n-2
=> 6 chia hết cho n-2
n-2 thuộc ước nguyên của 6
Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-2={-1;1;-2;2;-3;3;-6;6}
=>n={1;3;0;4;-1;5;-4;8}
Vậy n thuộc {1;3;0;4;-1;5;-4;8} thì n+4 chia hết cho n-2
b)2n+3=(n-1)+(n+4) chia hết cho n-1 ( vì 2n+3 chia hết cho n-1)
Mà n-1 chia hết cho n-1
=> 4 chia hết cho n-1
=> n-1 thuộc ước nguyên của 4
Ư(4)={1;2;4;-1;-2;-4}
=>n-1={1;2;4;-1;-2;-4}
=>n={2;3;5;0;-1;-3}
Vậy n thuộc {2;3;5;0;-1;-3} thì 2n + 3 chia hết cho n - 1