Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.
1,
a, n+3 chia hết cho 13
=> n+3 thuộc B(13)
=> n+3=13k (k thuộc N)
=> n=13k-3
Vậy n có dạng 13k-3
b, n-3 chia hết cho n+3
=> n+3-6 chia hết cho n+3
=>6 chia hết cho n+3
=>n+3 thuộc Ư(6) = {1;2;3;6}
=>n thuộc {-2;-1;0;3}
Vì n là stn nên n thuộc {0;3}
c,2n+4+5 chia hết cho n+1
=>2n+2+7 chia hết cho n+1
=>2(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
=>n thuộc {0;7}
d, 2n-7 chia hết cho 3-n
Vì 2(3-n) chia hết cho 3-n
=> 2n-7+2(3-n) chia hết cho 3-n
=> 2n-7+6-2n chia hết cho 3-n
=>-1 chia hết cho 3-n
=>3-n thuộc Ư(-1)={1;-1}
=>n thuộc {2;4}
2,
Ta có: (p-1)p(p+1) chia hết cho 3 mà (p,3)=1 nên (p-1)(p+1) chia hết cho 3 (1)
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ => p-1 và p+1 là 2 số chẵn liên tiếp, có 1 số là bội 4 nên tích của chúng chia hết cho 8 (2)
Mà (3,8) = 1 (3)
Từ (1),(2),(3) => (p-1)(p+1) chia hết cho 24
a,n-3 chia hết n+3
có n-3 chia hết n+3
<=> n+3-6chia hết n+3
vì n+3 chia hết n+3 nên 6 chia hết n+3
=>n+3 thuộc ước 6 ={1;2;3;6}
=> n = 4;5;6;9
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
a) Nếu n + 4 chia hết cho n - 2 => n phải chia hết cho 4 hoặc -4
Xin lỗi, phần b mình chưa giải dc.
n+4=(n-2)+6 chia hết cho n-2 (vì n+4 chia hết cho n-2)
Mà n-2 chia hết cho n-2
=> 6 chia hết cho n-2
n-2 thuộc ước nguyên của 6
Ư(6)={-1;1;-2;2;-3;3;-6;6}
=>n-2={-1;1;-2;2;-3;3;-6;6}
=>n={1;3;0;4;-1;5;-4;8}
Vậy n thuộc {1;3;0;4;-1;5;-4;8} thì n+4 chia hết cho n-2
b)2n+3=(n-1)+(n+4) chia hết cho n-1 ( vì 2n+3 chia hết cho n-1)
Mà n-1 chia hết cho n-1
=> 4 chia hết cho n-1
=> n-1 thuộc ước nguyên của 4
Ư(4)={1;2;4;-1;-2;-4}
=>n-1={1;2;4;-1;-2;-4}
=>n={2;3;5;0;-1;-3}
Vậy n thuộc {2;3;5;0;-1;-3} thì 2n + 3 chia hết cho n - 1