K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{1;0;2;-1\right\}\)

c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-2\right\}\)

30 tháng 12 2024

a;   (2n + 1) ⋮ (6  -n)

     [-2.(6 - n) + 13] ⋮ (6 - n)

                        13 ⋮ (6 - n)

       (6 - n) ϵ  Ư(13) = {-13; -1; 1; 13}

        Lập bảng ta có:

6 - n -13 -1 1 13
n 19 7 5 -7
n ϵ Z  tm tm tm tm

Theo bảng trên ta có: n ϵ {19; 7; 5; -7} 

Vậy các giá trị nguyên của n thỏa mãn đề bài là:

n ϵ {19; 7; 5; -7} 

   

 

 

30 tháng 12 2024

b; 3n ⋮ (5  - 2n)

   6n ⋮ (5  - 2n)

  [15 - 3(5 - 2n)] ⋮ (5  - 2n)

     15 ⋮ (5  -2n) 

  (5  - 2n) ϵ Ư(15) = {-15; -1; 1; 15}

Lập bảng ta có:

5 - 2n -15 -1 1 15
n 10 3 2 -5
n ϵ Z tm tm tm tm

  Theo bảng trên ta có: n ϵ {10; 3; 2; -5}

Vậy các giá trị nguyên n thỏa mãn đề bài là:

n ϵ {-5; 2; 3; 10}

 

Bài 2: 

Vì n là số tự nhiên lẻ nên \(n=2k+1\left(k\in N\right)\)

1: 

\(n^2+4n+3\)

\(=n^2+3n+n+3\)

\(=\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=4\left(k+1\right)\left(k+2\right)\)

Vì k+1;k+2 là hai số nguyên liên tiếp 

nên \(\left(k+1\right)\left(k+2\right)⋮2\)

=>\(4\left(k+1\right)\left(k+2\right)⋮8\)

hay \(n^2+4n+3⋮8\)

2: \(n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!\)

=>\(k\left(k+1\right)\left(k+2\right)⋮6\)

=>\(8k\left(k+1\right)\left(k+2\right)⋮48\)

hay \(n^3+3n^2-n-3⋮48\)

1 tháng 2 2016

cách khác : a/ n + 6 = (n + 2) + 4 chia het cho n + 2 => 4 chia het cho n + 2 => n + 2 la uoc cua 4 
=>ma n + 2 >=2 nen ta co hai truong hop 
n + 2 = 4 => n = 2; 
n + 2 = 2 => n = 0, 
Vay n = 2 ; 0. 
b/ Tuong tu cau a 
c/ (3n + 1) Chia het cho 11 - 2n => [2(3n + 1) + 3(11 - 2n)] chia het cho 11 - 2n
=> 35 chia het cho 11 - 2n => 
+)11 - 2n = 1 => n = 5 
+)11 - 2n = 5 => n = 3 
+)11 - 2n = 7 => n = 2 
+)11 - 2n = 35 => n < 0 (loai) 
+)11 - 2n = -1 => n = 6 
+)11 - 2n = - 5 => n = 8 
+)11 - 2n = -7 => n = 9 
+)11 - 2n = -35 => n=23 
Vay : n = 2;3;5;6;8;9;23 

d/ B = (n2 + 4):(n + 1) = [(n +1)(n - 1) + 5]:(n + 1) = n - 1 + 5/(n +1) 
Do n2 + 4 chia het cho n + 1 => 5 chia het cho n +1 => n = 0;4.

1 tháng 2 2016

a) n+6 chia hết cho n+2=> n+2 là ước của n+6=>n+2 là Ư(4)={-4,-2,-1,1,2,4}

n+2=-4=>n=-6

n+2=-2=>n=-4

n+2=-1=>n=-3

n+2=1=>n=-1

n+2=2=>n=0

n+2=4=>n=2

vậy x thuộc {-6,-4,-3,-1,0,2}

b) tương tự

2 tháng 2 2016

a. n + 6 chia hết cho n + 2

=> n + 2 + 4 chia hết cho n + 2

Mà n + 2 chia hết cho n + 2

=> 4 chia hết cho n + 2

=> n + 2 thuộc Ư(4) = {-4; -2; -1; 1; 2; 4}

Mà n thuộc N

=> n thuộc {0; 2}.

b. 2n + 3 chia hết cho n - 2

=> 2n - 4 + 7 chia hết cho n - 2

=> 2.(n - 2) + 7 chia hết cho n - 2

Mà 2.(n - 2) chia hết cho n - 2

=> 7 chia hết cho n - 2

=> n - 2 thuộc Ư(7) = {-7; -1; 1; 7}

Mà n thuộc N

=> n thuộc {1; 3; 9}.

c. 3n + 1 chia hết cho 11 - 2n

=> 3n + 1 chia hết cho -(11 - 2n)

=> 3n + 1 chia hết cho 2n - 11

=> 2.(3n + 1) chia hết cho 2n - 11

=> 6n + 2 chia hết cho 2n - 11

=> 6n - 33 + 35 chia hết cho 2n - 11

=> 3.(2n - 11) + 35 chia hết cho 2n - 11

=> 35 chia hết cho 2n - 11

=> 2n - 11 thuộc Ư(35) = {-35; -7; -5; -1; 1; 5; 7; 35}

Mà n thuộc N

=> n thuộc {2; 3; 5; 6; 8; 9; 23}

d. n2 + 4 chia hết cho n + 1

=> n2 + 4 - n.(n + 1) chia hết cho n + 1

=> n2 + 4 - n2 - n chia hết cho n + 1

=> -n + 4 chia hết cho n + 1

=> -(n - 4) chia hết cho n + 1

=> n - 4 chia hết cho n + 1

=> n + 1 - 5 chia hết cho n + 1

=> 5 chia hết cho n + 1

=> n + 1 thuộc Ư(5) = {-5; -1; 1; 5}

Mà n thuộc N

=> n  thuộc {0; 4}.

2 tháng 2 2016

a)2 vì 2+6 chia hết 2+2 =8 chia hết 4