Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
-------------
4n-9 = 4n+2-11 = 2(2n+1)-11. Nhận thấy: 2(2n+1) chia hết cho 2n+1 với mọi n
=> Để (4n-9) chia hết cho 2n+1 thì 11 phải chia hết cho 2n+1
=> 2n+1 = (-11,-1,1,11)
2n+1 | -11 | -1 | 1 | 11 |
n | -6 | -1 | 0 | 5 |
\(4n+9=4n+2+7=2\left(2n+1\right)+7\)chia hết cho \(2n+1\)
tương đương với \(7\div\left(2n+1\right)\)mà \(n\)nguyên nên
\(2n+1\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow n\in\left\{-4,-1,0,3\right\}\).
\(\left(4n+1\right)⋮\left(2n-1\right)\\ \Rightarrow\left(4n-2+3\right)⋮\left(2n-1\right)\\ \Rightarrow\left[2\left(2n-1\right)+3\right]⋮\left(2n-1\right)\)
Vì \(2\left(2n-1\right)⋮\left(2n-1\right)\Rightarrow3⋮\left(2n-1\right)\Rightarrow2n-1\inƯ\left(3\right)\)
Ta có bảng:
2n-1 | -3 | -1 | 1 | 3 |
n | -1 | 0 | 1 | 2 |
Vậy \(n\in\left\{-1;0;1;2\right\}\)
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
4n+1 hia hết cho 2n-1
=>4n-2+3 chia hết cho 2n-1
2(2n-1)+3 chia hết cho2n-1 mà 2(2n-1) chia hết cho 2n-1 nên 3 chia hết cho 2n-1
hay 2n-1 thuộc Ư(3)={3;-3;1;-1}
2n-1=3=>n=2
2n-1=-3=>n=-1
2n-1=1=>n=1
2n-1=-1=>n=0
VẬY n thuộc {2;-1;1;0}
Theo bài ra ta có:
4n+1chia hết cho 2n-1
=>(4n+1)-(2n-1)chia hết cho2n-1
=>(4n+1)-2.(2n-1) chia hết cho 2n-1
=>4n+1-4n-2 chia hết cho 2n-1
=>-1 chi hết cho 2n-1=>2n-1 thuộc Ư(-1)={1;-1}
Vậy n=1 hoặc n=0