Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
Ta có xy = x:y
=>y2=x:x=1
=>y=1 hoặc y=-1
- Nếu y=1 => x+1=x (vô lí)
- Nếu y=-1 => x-1=-x
=> x=\(\frac{1}{2}\)
Vậy y=-1 x=\(\frac{1}{2}\)
Ta có:
\(xy=x:y\)
\(\Rightarrow xy:\frac{x}{y}=1\)
\(\Rightarrow y^2=1\)
\(\Rightarrow y=\pm1.\)
Lại có:
\(x+y=xy\)
\(\Rightarrow\frac{x+y}{xy}=1\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=1.\)
Thay \(y=-1\) vào ta được:
\(\frac{1}{x}-1=1\)
\(\Rightarrow\frac{1}{x}=2\)
\(\Rightarrow x=\frac{1}{2}.\)
Thay \(y=1\) vào ta được:
\(\frac{1}{x}+1=1\)
\(\Rightarrow\frac{1}{x}=0\)
\(\Rightarrow x\in\varnothing\)
Vậy \(x=\frac{1}{2};y=-1.\)
Chúc bạn học tốt!
a) Ta có: x - y = 2( x + y )
=> x - y = 2x + 2y
=> x - 2x = 2y + y
=> -x = 3y
=> x : y = -1/3
Mà x - y = 2( x + y) = x : y
=> x - y = 2( x + y) = x : y = -1/3
=> x + y = -1/3 : 2 = -1/6
=> x = ( -1/6 - 1/3 ) : 2 = -1/4
=> y = -1/6 + 1/4 = 1/12
Vậy x = -1/4; y = 1/12