K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

B = 21 + 23 + 25 + ......+22015 + 22017

4B = 22 . ( 21 + 2+ 25 +.....+ 22015 + 22017 )

4B = 23 + 25 + 2+ 2 9 + ...... + 22019

4B - B = 22019 - 21

=> 3B = 22019 - 21

=> B = \(\frac{2^{2019}-2^1}{3}\)

12 tháng 4 2018

biết chết liền

25 tháng 11 2018

s1=1+2+3+...+99

s1=99+98+...+1

2s1=100+100+....+100

2s1=100.99

s1=100.99:2=4950(mấy bài sau lam tương tự nha)

25 tháng 11 2018

4+4^2+4^3+...+4^90 chia hết cho 21

=(4+4^2+4^3)+...+(4^88+4^89+4^90)

=84.1+(4^4+4^5+4^6+...+4^90)

vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21         (ĐPCM)

27 tháng 2 2018

\(A=2^1+2^2+2^3+2^4+2^5+2^6+2^7+...+2^{99}\)

    \(=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

 \(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

 \(=2.7+2^4.7+2^7.7+...+2^{97}.7\)

   \(=\left(2+2^4+2^7+...+2^{97}\right).7⋮7\)

\(\Rightarrow A⋮7\)

27 tháng 2 2018

A = 21 +2+2+24 +25  +2+2….+ 299 

A = (21 +2+23) +(24 +25  +26) + ….+ (297+298+299)

A = 14 + (21.23 +22.23  +23.23) + ….+ (21.296+22.296+23.296)

A = 14 + 23(21+22+23) + ...... + 296(21+22+23)

A = 14.1 + 23.14 + ....... + 296.14

A = 14.(1+23+....+296)

14 \(⋮\) 7

=> A \(⋮\) 7 (đpcm)

23 tháng 10 2018

1. \(A=\left(2^0+2^2+2^4+...+2^{2018}\right)+\left(2^1+2^3+...+2^{2017}\right)\)

\(=\left(1+2^2\right)+\left(2^4+2^6\right)+...+\left(2^{2016}+2^{2018}\right)+2^1+\left(2^3+2^5\right)+...+\left(2^{2015}+2^{2017}\right)\)

\(=\left(1+2^2\right)+2^4\left(1+2^2\right)+...+2^{2016}\left(1+2^2\right)+2^1+2^3\left(1+2^2\right)+...+2^{2015}\left(1+2^2\right)\)

\(=5\left(1+2^4+...+2^{2016}\right)+2+5\left(2^3+...+2^{2015}\right)\)chia 5 dư 2

Nhận xét: Vì 1+22 =5 chia chết cho 5. Ghép các cặp đôi sao cho xuất hiện 1+22

2,

Nhận xét: Với a không chia hết cho  5

Ta có: a4 đồng dư với 1 module 5 hay a4-1 chia hết cho 5 với mọi a không chia hết cho 5

Suy ra a5-a=a(a4-1) chia hết cho 5 với mọi a thuộc Z

a(a4-1)=a(a2-1)(a2+1) =a(a-1)(a+1)(a2+1) chia hết cho 2 và chia hết cho 3 vì a(a+1) là 2 số nguyên liên tiếp, a(a+1)(a-1) là 3 số nguyên liên tiếp

Vậy a5-a chia hết cho 30 (=2.3.5) vì (2,3,5)=1

(a15 + a25 + ... + an5) -(a+ a2+...+an) =( a15-a1)+...+(an5-an) chia hết cho 30

Mà a+ a2+...+achia hết cho 30 

Vậy a15 + a25 + ... + an5 chia hết cho 30 hay a15 + a25 + ... + an5 = 0 (mod 30)

27 tháng 2 2016

Bài 2 : a) Ta có :

\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)

=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)

=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)

=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)

Vì 4 chia hết cho 4 => S chia hết cho 4

b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)

=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)

Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0

27 tháng 2 2016

S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015

=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016

=> 3S - S = 32016 - 1

=> S = ( 32016 - 1 ) : 2

Ta có 32016 = ( 34 )504 = 81504 = .......1

=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5

Vậy chữ số tận cùng của S là 5

12 tháng 12 2014

A=1+3+32+33+...+320

A=(1+3)+(32+33)+(34+35)+...+(319+320)

A= 4+32(1+3)+34(1+3)+......+319(1+3)

A=4+32.4+34.4+....+319.4

A=4.(32+34+...+319) =>A chia hết cho 4

 

 

 

 

 

 

 

 

0+(