Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng của B:
\(100-1+1=100\) (số)
Do 100 chia 3 dư 1 nên ta có thể nhóm các số hạng của B thành từng nhóm mà mỗi nhóm có 3 số hạng, dư 1 số hạng như sau:
\(B=3+\left(3^2+3^3+3^4\right)+\left(3^5+3^6+3^7\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=3+3^2.\left(1+3+3^2\right)+3^5.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=3+3^2.13+3^5.13+...+3^{98}.13\)
\(=3+13.\left(3^2+3^5+...+3^{98}\right)\)
Do \(13.\left(3^2+3^5+...+3^{98}\right)⋮13\)
\(\Rightarrow B=3+13.\left(3^2+3^5+...+3^{98}\right)\) chia 13 dư 3
Vậy số dư trong phép chia B cho 13 là 3
B = 3 + 32 + 33 + 34 + ... + 3100
Xét dãy số: 1;2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100
vì 100 : 3 = 33 dư 1 nên nhóm 3 số hạng liên tiếp của B thành một nhóm khi đó
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.(32 + 3 + 1) + 3
B = 398.13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì 13 ⋮ 13; B : 13 dư 3.
\(1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+...+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
=> \(1+3+3^2+...+3^{100}\) chia 13 dư 4
P/S: lưu ý từ 1 đến 3^100 có 101 số hạng, mà ghép thành 3 cặp thừa 2 cặp mà mk làm cặp đầu vì nếu làm cặp cuối ko tính ra đc
\(3^3\equiv1\left(mod13\right)\)
\(\Rightarrow\left(3^3\right)^{33}\equiv1^{33}\left(mod13\right)\)
\(\Rightarrow3^{99}\equiv1\left(mod13\right)\Rightarrow3^{99}.3\equiv1.3\left(mod13\right)\Rightarrow3^{100}\equiv3\left(mod13\right)\)
Vậy 3^100 chia 13 dư 3
cách khác:
3^0 : 13 dư 1
3^1:13 dư 3
3^2: 13 dư 9
3^3: 13 dư 1
3^4: 13 dư 3
3^5: 13 dư 9
3^6: 13 dư 1
3^7:13 dư 3
....
3^n: 13 dư ?
....để ý quy luật : số dư (1,3,9) nếu tính n từ 0
hoặc (3,9,1) nếu tính n từ 1
--> quy luận số mũ:
1: chia 3 dư 1 Ứng với (3)
2: chia 3 dư 2 Ứng với (9)
3: chia 3 dư 0 Ứng với (1)
...........
100 chia 3 dư 1 --> Ứng với (3)
\(\frac{3^{100}}{13}=\frac{9^{50}}{13}=\frac{81^{25}}{13}=\frac{\left(13.6+3\right)^{25}}{13}=K+\frac{3^{25}}{13}\)
\(\frac{3^{25}}{13}=\frac{3.\left(13.6+3\right)^6}{16}=M+\frac{3.3^6}{13}\)
\(\frac{3.3^6}{13}=\frac{3^3.\left(13.6+3\right)^1}{13}=Q+\frac{3^3.3^1}{13}\)
\(\frac{3^3.3^1}{13}=\frac{3^4}{13}=\frac{\left(13.6+3\right)^1}{13}=P+\frac{3^1}{13}\)
đáp : 3
1a) 4^21=(4^2)^10.4=(....6)^10.4=(......6).4=(.......4)
b) 3^100=(3^4)^25=(.....1)^25=(.....1)
Ta có : 3100 = 34.396 = 34.( 33 )32
Vì 33 = 27 = 13.2 + 1 nên 33 = 1 ( mod 13 ) , do đó :
( 33 )32 = 132 ( mod 13 ) hay 396 = 1 ( mod 13 )
34 = 31 = 13.6 + 3 , nên 34 = 3 ( mod 13 )
Vậy 34.396 = 1.3 ( mod 13 ) hay 3100 = 3 ( mod 13 )
=> 3100 chia cho 13 dư 3
chuẩn