Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài này :
Bạn học đồng dư thức chưa?
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Hay ta có đpcm
Ta có 1961 ≡ 1(mod 7) nên 1961^1962 ≡ 1 (mod 7)
có 1963 ≡ 3 (mod 7) nên 1963^1964 ≡ 3^1964 = (3^6)^327.3^2 = 9.(3^6)^327 ≡ 9 (mod 7)
vì 3^6 ≡ 1(mod 7) nên (3^6)^327 ≡ 1(mod 7)
Ta cũng có 1995 ≡ 5(mod 7) nên 1995^1996 ≡ 5^1996 = (5^6)^332.5^4 ≡ 2.1 = 2(mod 7)
do 5^6 ≡ 1(mod 7) và 5^4 ≡ 2 (mod7)
Cộng lại ta có S ≡ 14 ≡ 0 (mod 7)
Ta thấy 1963 chia cho 7 dư 3
Do đó 19631964 = (BS 7 +3)1964 = BS 7 + 31964
Xét số 31964 = 32. (33)654 = 9. (28 – 1 )654 = 9. (BS 7 + 1 ) = BS 7 + 2
Vậy 31964 chia cho 7 dư 2 do đó 19631964 chia cho 7 dư 2
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)