Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
A=4(4+1) +43(4+1)+45(4+1)+....+499(4+1)
= 5.4+43.5+...+499.5
=5.(4+43+...+499)
=> A chia 5 dư 0 hay A chia hết cho 5
A=(4+42)+(43+44)+...+(499+4100)
A=4(1+4)+43(1+4)+...+499(1+4)
A=5(4+43+...+499) chia hết cho 5
A=1+(21+22+23+24)+...+(297+298+299+2100)
A=1+2(1+2+22+23)+...+297(1+2+22+23)
A=1+(1+2+22+23)(2+...+297)
A=1+15(2+...+297)
Mà 15(2+...+297) chia hết cho 15
=> A chia 15 dư 1
A=2101 -1
do 24 =1 (mod 15)
suy ra (24)25 = (mod 15)
suy ra
2100=1 (mod 15)
2101=2 (mod 15)
suy ra:2101-1=1 (mod 15)
Vậy A chia 15 dư 1
A=4+42+43+44+....+489
<=> A= (4+4^2+4^3+4^4)+(4^5+4^6+4^7+4^8)+...+(4^87+4^88+4^89+4^90)-4^90
<=>A=4(1+4+4^2+4^3)+4^5(1+4+4^2+4^3)+...+4^87(1+4+4^2+4^3)-4^90
<=>A=4.85+4^5.85....4^87.85-4^90
<=>A=(4+4^5+....4^87).85-4^90
Vì A=(4+4^5+....4^87).85-4^90 chia hết cho 85
=> A= (ban đầu)chia hết cho 85
=> A o có dư
Ta thấy 1963 chia cho 7 dư 3
Do đó 19631964 = (BS 7 +3)1964 = BS 7 + 31964
Xét số 31964 = 32. (33)654 = 9. (28 – 1 )654 = 9. (BS 7 + 1 ) = BS 7 + 2
Vậy 31964 chia cho 7 dư 2 do đó 19631964 chia cho 7 dư 2
số dư đó là:2
k mk nhé Nguyễn Tuấn Minh