K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

TH1: n = 3k , k là số tự nhiên.

Có: \(A=a^{6k}+a^{3k}+1=\left(a^{6k}-1\right)+\left(a^{3k}-1\right)+3\)

\(=\left(a^{3k}-1\right)\left(a^{3k}+1\right)+\left(a^{3k}-1\right)+3=\left(a^{3k}-1\right)\left(a^{3k}+2\right)+3\)

lại có:  \(a^{3k}-1=\left(a^3\right)^k-1⋮a^3-1\) và \(a^3-1⋮a^2+a+1\)

=> \(a^{3k}-1⋮a^2+a+1\)

=> \(\left(a^{3k}-1\right)\left(a^{3k}+2\right)⋮a^2+a+1\)

 => \(A:a^2+a+1\) dư 3, với mọi a khác -2; -1; 0; 1.

TH2: n = 3k + 1, k là số tự nhiên.

Có: \(A=a^{6k+2}+a^{3k+1}+1=a^2\left(a^{6k}-1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)

\(=a^2\left(a^{3k}-1\right)\left(a^{3k}+1\right)+a\left(a^{3k}-1\right)+\left(a^2+a+1\right)\)

\(=\left(a^{3k}-1\right)\left[a^2\left(a^{3k}+1\right)+a\right]+\left(a^2+a+1\right)⋮a^2+a+1\)

Vì \(a^{3k}-1⋮a^2+a+1;a^2+a+1⋮a^2+a+1\)

=> \(A⋮a^2+a+1\)

hay \(A:a^2+a+1\) dư 0

TH3: n = 3k +2, k là số tự nhiên

Có: \(A=a^{6k+4}+a^{3k+2}+1=a^4\left(a^{6k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+a^2+1\right)\)

\(=a^4\left(a^{3k}+1\right)\left(a^{3k}-1\right)+a^2\left(a^{3k}-1\right)+\left(a^4+2a^2+1\right)-a^2\)

\(=\left(a^{3k}-1\right)\left[a^4\left(a^{3k}+1\right)+a^2\right]+\left(a^2-a+1\right)\left(a^2+a+1\right)⋮a^2+a+1\)

=> \(A:a^2+a+1\) dư 0.

Kêt luận:  Với n là số tự nhiên  chia hết cho 3, a là số nguyên khác -2; -1 ; 0; 1  thì A chia cho a^2 +a +1 dư 3

                      n là số tự nhiên không chia hết cho 3, a là số nguyên bất kì thì A chia cho a^2 +a +a dư 0.

.

1 tháng 11 2019

.

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.