Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+Ta có : 35 ≡ 1 (mod 11) => (35)401 ≡ 1 (mod 11)
Và 45 ≡ 1 (mod 11) => (45)401 ≡ 1 (mod 11)
=> A = 32005 + 42005 ≡ 2 (mod 11)
=> A chia cho 11 dư 2
+Ta có : 33 ≡ 1 (mod 13) => (33)668. 3 ≡ 1.3 (mod 13) => 32005 ≡ 3 (mod 13)
Và 43 ≡ -1 (mod 13) =>(43)668 .4≡ 1.4 (mod 13) => 42005 ≡ 4 (mod 13)
=> A = 32005 + 42005 ≡ 7 (mod 13)
=> A chia cho 13 dư 7 .
Ta có:
72004=74.501=A1
=>A1:10=(A0+1):10=B0+1=B1=>72004:10 dư 1
32003=34.500+3=34.500+33=C1+27=D8:10 dư 8
Ta xét chữ số tận cùng của 72004 và 32003
ta có: 72004 = 74.501 = (.....1)501 = .........1 => tận cùng là 1 => chia 10 dư 1
ta có: 32003 = 34.500+3 = (......1)500 . 33 = (........1) . 27 = ......7 => tận cùng là 7 => chia 10 dư 7
Vậy: 72004 chia 10 dư 1 ; 32003 chia 10 dư 7
Ta có :
\(2^5=32\overline{=}1\left(mod31\right)\)
\(\Rightarrow\left(2^5\right)^{402}\overline{=}1\left(mod31\right)\)
\(\Rightarrow2^{2010}\overline{=}1\left(mod31\right)\)
\(\Rightarrow2^{2011}\overline{=}2\left(mod31\right)\)
Vậy \(2^{2011}\) chia 31 dư 2
ta có:
4^99=(4^3)^33=1
suy ra số dư =1