K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Muốn n=a74b chia hết cho 6 thì phải chia hết cho 2 và 3.                                                                              Mà a74b chia hết cho 5 và 2 nên b=0.                      Vậy n=a740 chia hết cho 3                                          => a + 7 + 4 + 0 chia hết cho 3                                   => 9 + ( a + 2 ) chia hết cho  3                                    => a + 2             chia hết cho 3                                     => a là 1;4;7                                                                   Do đó số cần tìm là 1740 ; 4740 ; 7740  

17 tháng 7 2016

52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31

Vậy 52017 + 52016 + 52015 chia hết cho 31.

17 tháng 7 2016

Ta có:  \(5^3\equiv1\left(mod31\right)\)

=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)

=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)

=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)

=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)

Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)

2 tháng 4 2017

vì chữ số tận cùng của 2015 là 5 nên 2015 nhân với số nào thì tận cùng vẫn là 5

2016 tận cùng là 6 nên 2016 nhân với số nào tận cùng vẫn là 6

A=5+6=11

B= tan cung la 6

AxB=11x6=66

66 ko chia het cho 5

3 tháng 4 2017

Vì sao B có tận cùng là 6

24 tháng 12 2016

A = 5 + 52 + 5+ ...... + 52016 

A = (5 + 52) + (53 + 54) + ....... + (52015 + 52016)

A = 5.(1 + 5) + 53.(1 + 5) + ..... + 52015.(1 + 5)

A = 5.6 + 53.6 + ...... + 52015.6

A = 6.(5 + 53 + ...... + 52015)  chia hết cho 6

A = 5 + 52 + 5+ ...... + 52016 

A = (5 + 52 + 53) + (54 + 55 + 56) + ...... + (52014 + 52015 + 52016)

A = 5.(1 + 5 + 25) + 54.(1 + 5 + 25) + ....... + 52014.(1 + 5 + 25)

A = 5.31 + 54.31 + ........ + 52014.31

A = 31.(5 + 54 + ...... + 52014) chia hết cho 31 

24 tháng 12 2016

3n + 5 chia hết cho n + 1

3n + 3 + 2 chia hết cho n + 1

3.(n + 1) + 2 chia hết cho n + 1

=> 2 chia hết cho n + 1

=> n + 1 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}

=> n = {0 ; -2 ; 1 ; -3}

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!