Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho các số nguyên a,b,c thỏa mãn
a.b.c=2015^2016
tìm số dư của phép chia 19.a^2+5.b^2+1890.c^2 cho 24
2015 là số có 4 chữ số
abc là số có 3 chữ số
Chỉ 2015\(^0\)bé hơn số có 3 chữ số Còn các số mũ<0 thì lớn hơn số có 3 chữ số suy ra abc không tồn tại để thỏa mãn yêu cầu
a bằng số dư của phép chia N cho 2 .
=> a = 1
=> abcd có dạng 1bcd.
e thuộc số dư của phép chia N cho 6.
=> e thuộc 0,1,2,3,4,5 mà d bằng số dư của phép chia N cho 5 .
=> d,e thuộc 00,11,22,33,44,05.
c thuộc số dư của phép chia N cho 4.
=> c,d,e thuộc 000,311,222,133,044,105.
=> a,b,c,d,e có dạng là 1b000,1b311,1b222,1b333,1b044,1b105.
Vì b bằng số dư của phép chia N cho 3
=> a+c+d+e chia hết cho 3 .
=> Chọn được số 1b311,1b044.
Ta được các số là : 10311,11311,12311,10044,11044,12044.
Câu 5:
\(\left(x^2-8\right)\left(x^2-15\right)< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-8>0\\x^2-15< 0\end{matrix}\right.\Leftrightarrow8< x^2< 15\)
mà x là số nguyên
nên \(x\in\left\{3;-3\right\}\)