\(\varepsilonℕ\)biết 2\(^{n+3}\)*2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2020

\(2^x+2^{x+3}=144\)

\(\Leftrightarrow2^x+2^x.2^3=144\)

\(\Leftrightarrow2^x+2^x.8=144\)

\(\Leftrightarrow2^x.\left(1+8\right)=144\)

\(\Leftrightarrow2^x.9=144\)

\(\Leftrightarrow2^x=16\)\(\Leftrightarrow2^x=2^4\)

\(\Leftrightarrow x=4\)

Vậy \(x=4\)

1 tháng 1 2019

ta có \(2^n\equiv0\left(mod4\right)\)với \(\left(n\in N;n>1\right)\)

Đặt \(2^n=4k\left(k\in Z^+;k\ge1\right)\)

\(\Rightarrow2^{2^n}-1=2^{4k}-1=\left(2^k\right)^4-1\)

Theo định lý fermat nhỏ ta có :

\(\left(2^k\right)^4=\left(2^k\right)^{5-1}\equiv1\left(mod5\right)\)

\(\Rightarrow\left(2^k\right)^4-1\equiv0\left(mod5\right)\)

\(\Rightarrow Q.E.D\)

7 tháng 10 2017

1/

\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)

=> y/ 3 - 5 = 0 hoặc y/3 - 5 = 1

=> y/3 = 5 hoặc y/3 = 6

=> y = 15 hoặc y = 18

2/

d) \(\left(n^{54}\right)^2=n\)

=> n = 0 hoặc n=1

3 tháng 10 2019

a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)

\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)

\(\Rightarrow5n=5\Rightarrow n=1\)

b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)

\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)

\(\Rightarrow1+n=2\Rightarrow n=1\)

c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)

\(\Rightarrow6+n=7\Rightarrow n=1\)

d)\(2^{-1}.2^n+4.2^n=9.2^5\)

\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)

\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)

\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)

\(\Rightarrow n-1=5\Rightarrow n=6\)

e)\(243\ge3^n\ge9.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)

\(\Rightarrow3^5\ge3^n\ge3^4\)

\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)

f)\(2^{n+3}.2^n=128\)

\(\Rightarrow2^{n+3+n}=2^7\)

\(\Rightarrow2^{2n+3}=2^7\)

\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)

Hok tối

22 tháng 9 2019

a) 9.27n = 35

=> 32.33n = 35

=> 32 + 3n = 35

=> 2 + 3n = 5

=> 3n = 5 -  2

=> 3n = 3

=> n = 1

b) (23 : 4).2n = 4

=> 2.2n = 4

=> 2n = 4 : 2

=> 2n = 2

=> n = 1

c) 3-2.34 . 3n = 37

=> 3-2 + 4 + n = 37

=> 32 + n = 37

=> 2 + n = 7

=> n = 7 - 2 = 5

d) 2-1.2n + 4.2n = 9.25

=> (1/2 + 4).2n = 9.25

=> 9/2.2n = 9.25

=> 2n = 9.25 : 9/2

=> 2n = 26

=> n = 6

22 tháng 9 2019

\(a,9\cdot27^n=3^5\)

\(\Rightarrow9\cdot27^n=243\)

\(\Rightarrow27^n=243:9=27\)

\(\Rightarrow27^n=27^1\)

\(\Rightarrow x=1\)

\(b,\left(2^3:4\right)\cdot2^n=4\)

\(\Rightarrow\left(8:4\right)\cdot2^n=4\)

\(\Rightarrow2\cdot2^n=4\)

\(\Rightarrow2^n=4:2=2\)

\(\Rightarrow n=1\)

\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)

\(\Rightarrow3^2\cdot3^n=3^7\)

\(\Rightarrow3^n=3^7:3^2=3^5\)

\(\Rightarrow n=5\)

\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)

\(\Rightarrow2^n\cdot\frac{9}{2}=288\)

\(\Rightarrow2^n=288:\frac{9}{2}=64\)

\(\Rightarrow2^n=2^6\)

\(\Rightarrow n=6\)

mik k cho bạn rồi đó Hân

pls k cho mik 

:((((((((((((((((((

18 tháng 7 2021

bạn chọn c là sai đó

26 tháng 5 2017

Bài 1:
a)1/9 x 27n= 3n

1/9=3n:27n

3n:27n=1/9

1n/9n=1/9

=>n=1

26 tháng 5 2017

\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)

=>2n-1=25=>n-1=5=>n=5+1=6

vậy......

~~~~~~~~~~~~~~~