Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n + 1 chia hết cho n- 1
ta có : n - 1 = n + 1 - 1 - 1
= n
Chứng minh n.(n +1).(n + 2) chia hết cho 3
TH1: n chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
TH2: n chia 3 dư 1
=> (n + 2) chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
TH3: n chia 3 dư 2
=> (n +1) chia hết cho 3
=> n.(n + 1).(n + 2) chia hết cho 3
Vì n.(n+1).(n+2) là tích 3 số liên tiếp nên có 1 số chia hết cho 3\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\) (1)
Vì n.(n+1) là tích 2 số liên tiếp nên có 1 số chia hết cho 2\(\Rightarrow n.\left(n+1\right)\left(n+2\right)⋮2\) (2)
Từ (1) và (2),vì UCLN(2,3)=1 nên \(n\left(n+1\right)\left(n+2\right)⋮6\)
a. n - 7 chia het cho n - 2
=> n - 7 . n - 2 chia het cho n - 2
=> n . ( 7 - 2 ) chiua het cho n - 7
=> 5 chia het cho n - 2
=> n - 2 \(\in\) Ư(5)
Ư(5) = { 1;5}
=> n - 2 \(\in\) 1 ; 5
=> n \(\in\) 3;7
a)
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
b)
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giả thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Câu a :
Chứng minh rằng : (n-1 ) (n+2) + 12 không chia hết cho 9
Giã thiết biểu thức : (n-1 ) (n+2) + 12 chia hết cho 9 .
Đặt A = (n-1 ) (n+2) + 12 , nên A = 9 hoặc bội số của 9 .
Ta có : A = (n-1 ) (n+2) + 12
A = n x n + n x 2 - n - 2 + 12
A = n x n + n + 10 A = n x (n + 1) + 10
A - 10 = n x (n + 1)
Vì theo giã thiết A là 9 hoặc bội số của 9 nên A chia hết cho 9 .
Vậy Nếu A bớt đi 9 thì A -9 sẽ chia hết cho 9 , nhưng kết quả biểu thức trên là :
A - 10 = n x (n + 1) mà A - 10 không chia hết cho 9 .
Vậy A - 10 = n x (n + 1) không chia hết cho 9 .
Hay (n-1 ) (n+2) + 12 không chia hết cho 9
Câu b :
Chứng minh rằng : ( n + 2 ) ( n +9 )+21 không chia hết cho 49
Muốn biểu thức ( n + 2 ) ( n +9 ) + 21 chia hết cho 49 thì biểu thức này = 49 hay bội số của 49.
Đặt : A = ( n + 2 ) ( n +9 ) + 21 ( A là bội số của 49) ta có :
A = ( n + 2 ) ( n +9 ) + 21
A = n x n + 9 x n + 2 x n + 18 + 21
A = n x n + 11 x n + 39
A - 39 = n x ( n + 11)
Vì giã thiết A là bội của 49 nên A - 39 không thể chia hết cho 49 nên
A = ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Vậy : ( n + 2 ) ( n +9 ) + 21 không chia hết cho 49
Nguồn :Toán Tiểu Học Pl
3n + 10 chia hết cho n - 1
3n - 3 + 13 chia hết cho n - 1
3.(n - 1) + 13 chia hết cho n - 1
=> 13 chia hết cho n - 1
=> n - 1 thuộc Ư(13) = {1 ; 13}
=> n = {2 ; 14}
\(3n+10⋮n-1\Leftrightarrow3n+13-3⋮n-1\Leftrightarrow13⋮n-1\Leftrightarrow n-1\inƯ\left(13\right)=\left\{1;13\right\}\)
Với \(n-1=1\Leftrightarrow n=0\)
Với \(n-1=13\Leftrightarrow n=12\)
bài này của lớp 6 mà ghi lớp 5 !!!!!! * 0 *
65856979
Vì n là số tự nhiên nên
Nếu n chia hết cho 2 thì n có dạng 2k
Khi đó (2k + 3).(2k + 6) = (2k + 3).2(k + 3) chia hết cho 2
Nếu n ko chia hết cho 2 thì n có dạng 2k + 1
Khi đó : (2k + 1 + 3) (2k + 1 + 6) = (2k + 4)(2k + 7) = 2(k + 2)(2k + 7) chia hết cho 2
Vậy với mọi số tự nhiên n thì (n + 3)(n + 6) đều chia hết cho 2 (đpcm)
1.Giả sử:
+) n lẻ => n=2k+1
=>(n+3)x(n+6) = (2k+1+3)x(2k+1+6)
=(2k+4)x(2k+7)
vì 2k+4 là số chẵn =>(2k+4)x(2k+7) chia hết cho 2=>(n+3)x(n+6) chia hết cho 2
+) n chẵn =>n=2k
=>(n+3)x(n+6) = (2k+3)x(2k+6)
vì 2k+6 là số chẵn =>(2k+3)x(2k+6) chia hết cho 2=>(n+3)x(n+6) chia hết cho 2(dpcm)
2.Nếu:
- n chẵn => bthức trên chia hết cho 2
- n lẻ => n=2k+1
=>nx(n+5) = (2k+1)x(2k+1+5)
=(2k+1)x(2k+6)
vì 2k+6 là số chẵn =>(2k+1)x(2k+6) chia hết cho 2=>nx(n+5) chia hết cho 2 (dpcm)
a) => n thuộc Ư(12)
=> n thuộc ( 1; 2; 3;4 ;6; 12)
b) => x+1+14 chia hết cho x+1
Vì x+1 chia hết cho x+1 nên 14 chia hết cho x+1
=> x+1 thuộc Ư(14)
=> x+1 thuộc ( 1,2,7,14)
Ta có bảng
x+1 | 1 | 2 | 7 | 14 |
x | 0 | 1 | 6 | 13 |
Vậy x thuộc ( 0,1,6,13)
c)
n chia hết cho n nên 5 cũng chia hết cho n
rồi bạn làm như bài b
d)
n+3 +4 chia hết cho n+3
Vì n+3 chia hết cho n+3 nên 4 chia hết cho n+3
bạn tiếp tục làm như bài trên
SORRY BẠN NHA MẤY BÀI DƯỚI MÌNH CHƯA HỌC