K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

a: =>|x-1/4|=3/4

=>x-1/4=3/4 hoặc x-1/4=-3/4

=>x=1 hoặc x=-1/2

b: \(\left|x+\dfrac{1}{2}\right|=\dfrac{1}{2}-\dfrac{9}{4}=\dfrac{2-9}{4}=-\dfrac{7}{4}\)(vô lý)

c: \(\Leftrightarrow\left[{}\begin{matrix}2x+5=1-x\\2x+5=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\x=-6\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{4}{3};-6\right\}\)

e: =>|3/2-x|=0

=>3/2-x=0

hay x=3/2

a) (x + 3) . (x - \(\frac{1}{2}\)) = 0

=> \(\hept{\begin{cases}x+3=0\\x-\frac{1}{2}=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)

ok nha!! 5756758769723414657765887805674765756568678568

29 tháng 7 2018

cái này đc gọi là câu hỏi hả?

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

a,

Trước khi sắp xếp ta thu gọn các đa thức trên

P(x)=-2x\(^2\)+3x\(^4\)+x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)x

=(x\(^2\)-2x\(^2\))+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)

=-1x\(^2\)+3x\(^4\)+x\(^3\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)+3x\(^2\)-\(\dfrac{1}{4}\)-4x\(^3\)-2x\(^2\)

=(3x\(^2\)-2x\(^2\))+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

=x\(^2\)+3x\(^4\)-4x\(^3\)-\(\dfrac{1}{4}\)

Sau khi thu gọn ta đi sắp xếp các đa thức theo lũy thừa giảm dần của biến

P(x)=3x\(^4\)+x\(^3\)-1x\(^2\)-\(\dfrac{1}{4}\)x

Q(x)=3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

b,Tính

+P(x)+Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x+3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\)

=(3x\(^4\)+3x\(^4\))+(x\(^3\)-4x\(^3\))+(x\(^2\)-x\(^2\))-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

=6x\(^4\)-3x\(^3\)-\(\dfrac{1}{4}\)x-\(\dfrac{1}{4}\)

+P(x)-Q(x)=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-(3x\(^4\)-4x\(^3\)+x\(^2\)-\(\dfrac{1}{4}\))

=3x\(^4\)+x\(^3\)-x\(^2\)-\(\dfrac{1}{4}\)x-3x\(^4\)+ 4x\(^3\)-x\(^2\)+\(\dfrac{1}{4}\)

=(3x\(^4\)-3x\(^{^{ }4}\))+(x\(^3\)+4x\(^3\))-(x\(^2\)+x\(^2\))-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

=5x\(^3\)-4x\(^2\)-\(\dfrac{1}{4}\)x+\(\dfrac{1}{4}\)

c,

Ta có:P(0)=3.0\(^4\)+0\(^3\)-0\(^2\)-\(\dfrac{1}{4}\).0

=3.0+0-0-0

=0(thỏa mãn)

Lại có:Q(0)=3.0\(^4\)+0\(^2\)-4.0\(^3\)-\(\dfrac{1}{4}\)

=3.0+0-4.0-\(\dfrac{1}{4}\)

=0-\(\dfrac{1}{4}\)

=-\(\dfrac{1}{4}\)(vô lí)

Vậy x=0 là nghiệm của đa thức P(x) nhưng ko phải là nghiệm của đa thức Q(x)