Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt đã cho đưa về dạng
(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0
<=> (2x+y+1)^2 + x^2 = 4
Mà 4 = 0 + 2^2 = 0 + (-2)^2
Xét các TH là ra
(2x+y)^2 + 2(2x+y) + 1 + x^2 - 4 = 0
<=> (2x+y+1)^2 + x^2 = 4
Mà 4 = 0 + 2^2 = 0 + (-2)^2
Xét các TH là ra
\(\Rightarrow x^4+x^2y^2+x^2+y^2=4x^2y\Rightarrow x^4+x^2y^2+x^2+y^2-4x^2y=0\)
\(\Rightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-x^2y-x^2y+x^2y^2\right)=0\Rightarrow\left(x^2-y\right)^2+\left(x^2\left(1-y\right)-x^2y\left(1-y\right)\right)=0\)
\(\Rightarrow\left(x^2-y\right)^2+\left(x^2-x^2y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)^2\)
vì \(\left(x^2-y\right)^2>=0;x^2\left(1-y\right)^2>=0\Rightarrow\left(x^2-y\right)^2+x^2\left(1-y\right)^2>=0\)
để \(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x^2-y=0\Rightarrow x^2=y\\x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow x^2-y=0\Rightarrow x^2=y;x^2\left(1-y\right)^2=0\Rightarrow x=0\)hoặc \(y=1\)
nếu \(x=0\Rightarrow x^2=0\Rightarrow y=0;y=1\Rightarrow x^2=1\Rightarrow x=1\)
vạy x=0 thì y=0 ; x=1 thì y=1
\(5x^4+y^2-4x^2y-85=0\)
\(\Leftrightarrow\left(4x^4-4x^2y+y^2\right)+x^4=85\)
\(\Leftrightarrow\left(2x^2-y\right)^2+x^4=85\)\(\left(=2^2+3^4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\\left|2x^2-y\right|=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\18-y=\pm2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=16\\y=20\end{matrix}\right.\end{matrix}\right.\left(n\right)\)
Vậy . . . >///<
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)
Bạn giải chi tiết cho mình được không? Mình chưa học đến phần này