Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia thành 2 trường hợp :
a)y2+y=x4+x3+x2+x=0 (1)
...(1)<=>y(y+1)=x(x3+x2+x+1)=0
...Pt này có 4 nghiệm sau
...x1=0; y1=0
...x2=0; y2= -1
...x3= -1; y3=0
...x4= -1; y4= -1
b)y2+y=x4+x3+x2+x (# 0) (2)
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì
...(2)<=>y(y+1)=(x2)(x2+x+1+1x1x)
...Đến đây lại chia 2 th :
...+{y=x2
.....{x+1+1x1x=1 (3)
.....(3) vô nghiệm =>th này vô nghiệm
...+{y+1=x2
.....{x+1+1x1x= -1
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại)
...Vậy khi y2+y=x4+x3+x2+x # 0 thì pt vô nghiệm
Tóm lại pt đã cho có 4 nghiệm
x1=0; y1=0
x2=0; y2= -1
x3= -1; y3=0
x4= -1; y4= -1
P/s:Mik ko chắc
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....
Ai hack nick mình thì trả lại đi !!!
nick :
- Tên: Vô danh
- Đang học tại: Trường Tiểu học Số 1 Nà Nhạn
- Địa chỉ: Huyện Điện Biên - Điện Biên
- Điểm hỏi đáp: 112SP, 0GP
- Điểm hỏi đáp tuần này: 47SP, 0GP
- Thống kê hỏi đáp
Ai hack hộ mình rồi gửi cho mình nhé mình cảm ơn
Ai là bạn của mình chắn chắn biết nên vào phần bạn bè hỏi mình mới là chủ nick
Mong olm xem xét ko cho ai hack nick nhau nữa ạ! Xin chân thành cảm ơn !
LInk : https://olm.vn/thanhvien/lehoangngantoanhoc
<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)
Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4
1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x
=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)
2./ 5x2 >= 0 với mọi x
=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)
- Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
- Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)
Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2
Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)2 = (2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1
Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4
=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.
Với x = -1 thì y = 1 hoặc -1
Với x = 3 thì y = 11 hoặc -11.
3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).
\(\Rightarrow x^4+x^2y^2+x^2+y^2=4x^2y\Rightarrow x^4+x^2y^2+x^2+y^2-4x^2y=0\)
\(\Rightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-x^2y-x^2y+x^2y^2\right)=0\Rightarrow\left(x^2-y\right)^2+\left(x^2\left(1-y\right)-x^2y\left(1-y\right)\right)=0\)
\(\Rightarrow\left(x^2-y\right)^2+\left(x^2-x^2y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)^2\)
vì \(\left(x^2-y\right)^2>=0;x^2\left(1-y\right)^2>=0\Rightarrow\left(x^2-y\right)^2+x^2\left(1-y\right)^2>=0\)
để \(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x^2-y=0\Rightarrow x^2=y\\x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow x^2-y=0\Rightarrow x^2=y;x^2\left(1-y\right)^2=0\Rightarrow x=0\)hoặc \(y=1\)
nếu \(x=0\Rightarrow x^2=0\Rightarrow y=0;y=1\Rightarrow x^2=1\Rightarrow x=1\)
vạy x=0 thì y=0 ; x=1 thì y=1
giúp mil vs mn