Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
ĐKXĐ: \(y\ge-1\)
- Với \(y=-1\Rightarrow x^4=1\Rightarrow x=\pm1\)
- Với \(y=0\Rightarrow x=\pm1\)
- Với \(y\ge1\Rightarrow\sqrt{y+1}>1\Rightarrow y+1>\sqrt{y+1}\) (1)
\(x^4-y^2=\sqrt{y+1}\Leftrightarrow\left(x^2-y\right)\left(x^2+y\right)=\sqrt{y+1}>1\)
Do \(x^2+y>0\Rightarrow x^2-y>0\Rightarrow x^2>y\Rightarrow x^2>1\Rightarrow x^2+y>1+y\) (2)
Lại có do x, y nguyên nên: \(x^2-y>0\Rightarrow x^2>y\Rightarrow x^2\ge y+1\Rightarrow x^2-y\ge1\) (3)
Từ (1), (2), (3) ta có:
\(\left(x^2-y\right)\left(x^2+y\right)>1.\left(y+1\right)>\sqrt{y+1}\)
\(\Rightarrow\) Phương trình đã cho vô nghiệm với mọi \(y\ge1\)
Vậy nghiệm nguyên của pt là: \(\left(x;y\right)=\left(-1;-1\right);\left(-1;0\right);\left(1;-1\right);\left(1;0\right)\)