Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn đầu vừa làm
(x+t/x)=y <=> 8(y^2-2)-34y+51=0
Làm tiếp đoạn cuối
\(x+\frac{1}{x}=\frac{17-6\sqrt{3}}{8}=a\) /a/<2 => vô nghiệm test lại cái cho chuẩn
\(x+\frac{1}{x}=\frac{17+6\sqrt{3}}{8}\)=a
\(x^2-a+1=0\Leftrightarrow\left(x-\frac{a}{2}\right)^2=\frac{a^2-4}{4}\Rightarrow\orbr{\begin{cases}x=\frac{a}{2}-\sqrt{a^2-4}\\x=\frac{a}{2}+\sqrt{a^2-4}\end{cases}}\)
Test lại bị nhầm
\(S=\left(\frac{5-2\sqrt{21}}{4};\frac{5+2\sqrt{21}}{4}\right)\)
1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm
Tớ học ngu nên chỉ biết cách nhân ra rồi rút gọn chứ không biết cách nào ngắn hơn :)) Hơi dài dòng nên phân tích từng vế 1 nhé :D
2/ \(\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)=4\left(2x^2+5x-204\right)\left(x^2-5x-206\right)\)
*****\(VT=\left(2x^2+5x-204\right)^2+4\left(x^2-5x-206\right)^2\)
\(=4x^4+25x^2+41616+20x^3-816x^2-2040x+4\left(x^4-387x^2+42436-10x^3+2060x\right)\)
\(=4x^2+25x^2+41616+20x^3-816x^2-2040x+4x^2-1548x^2+169744-40x^3+8240x\)
\(=8x^4-1523x^2+6200x+211360\)
*****\(VP=\left(8x^2+20x-816\right)\left(x^2-5x-206\right)\)
\(=8x^4-40x^3-1648x^2-100x^2-4120x-816x^2+4080x+168096\)
\(=8x^4-1748x^2-40x+168096\)
\(\Rightarrow8x^4-1523x^2+6200x+211360=8x^4-1748x^2-40x+168096\)
\(\Leftrightarrow-1523x^2+6200x+211360+1748x^2-40x+168096=0\)
\(\Leftrightarrow255x^2+43264+6240x=0\)
\(\Leftrightarrow\left(15x+208\right)^2=0\)
\(\Leftrightarrow15x+208=0\)
\(\Leftrightarrow x=-\frac{208}{15}\)
+ Ta có: \(x^4-5x^3+6x^2+5x+1=0\)
\(\Rightarrow x^2-5x+6+\frac{5}{x}+\frac{1}{x^2}=0\)( chia cả hai vế cho \(x^2\))
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-\left(5x-\frac{5}{x}\right)+6=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-5.\left(x-\frac{1}{x}\right)+6=0\)( *** )
- Đặt \(x-\frac{1}{x}=a\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=a^2+2\)
- Thay \(a=x-\frac{1}{x};\)\(a^2+2=x^2+\frac{1}{x^2}\)vào ( *** )
- Ta có: \(a^2+2-5a+6=0\)
\(\Leftrightarrow a^2-5a+8=0\)
\(\Leftrightarrow4a^2-20a+32=0\)
\(\Leftrightarrow\left(4a^2-20a+25\right)+7=0\)
\(\Leftrightarrow\left(2a-5\right)^2+7=0\)
- Ta lại có: \(\hept{\begin{cases}\left(2a-5\right)^2\ge0\forall a\\7>0\end{cases}}\Rightarrow \left(2a-5\right)^2+7\ge7>0\)mà \(\left(2a-5\right)^2+7=0\)
\(\Rightarrow\left(2a-5\right)^2+7\)( vô nghiệm ) \(\Rightarrow\)\(x^4-5x^3+6x^2+5x+1=0\)( vô nghiệm )
Vậy \(S=\left\{\varnothing\right\}\)
+ Ta có: \(\left(2x^2+5x-204\right)^2+4.\left(x^2-5x-206\right)=4.\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)( ** )
- Đặt \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)
- Thay \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)\(\Rightarrow\)\(a.b=\left(2x^2+5x-204\right).\left(x^2-5x-206\right)\)
vào ( ** )
- Ta có: \(a^2+4b^2=4ab\)
\(\Leftrightarrow a^2-4ab+4b^2=0\)
\(\Leftrightarrow\left(a-2b\right)^2=0\)
\(\Leftrightarrow a-2b=0\)
\(\Leftrightarrow a=2b\)( * )
- Thay \(a=2x^2+5x-204;\)\(b=x^2-5x-206\)vào ( * )
- Ta lại có: \(2x^2+5x-204=2.\left(x^2-5x-206\right)\)
\(\Leftrightarrow2x^2+5x-204=2x^2-10x-412\)
\(\Leftrightarrow\left(2x^2-2x^2\right)+\left(5x+10x\right)=-\left(412-204\right)\)
\(\Leftrightarrow15x=-208\)
\(\Leftrightarrow x=-\frac{208}{15} \left(TM\right)\)
Vậy \(S=\left\{-\frac{208}{15}\right\}\)
Bài 2 ;
Ta có : x2 + 3x
= x2 + 3x + \(\frac{9}{4}-\frac{9}{4}\)
= \(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà ; \(\left(x+\frac{3}{2}\right)^2\ge\forall x\)
Nên : \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi x = \(-\frac{3}{2}\)
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
(3x2 + 10x - 8)2 = (5x2 - 2x + 10)2
<=> (3x2 + 10x - 8)2 - (5x2 - 2x + 10)2 = 0
<=> (3x2 + 10x - 8 - 5x2 + 2x - 10)(3x2 + 10x - 8 + 5x2 - 2x + 10) = 0
<=> (-2x2 + 12x - 18)(8x2 + 8x + 2) = 0
<=> -4(x2 - 6x + 9)(4x2 + 4x + 1) = 0
<=> (x - 3)2(2x + 1)2 = 0
<=> \(\orbr{\begin{cases}x-3=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=-\frac{1}{2}\end{cases}}\)
Vậy S = {3; -1/2}
tôi ko biết
phân tích đa thức thành nhân tử