K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

Ta có:\(7⋮7\Rightarrow7x^2⋮7;714⋮7\)

\(\Rightarrow3y^2⋮7\)

Mà \(\left(3,7\right)=1\Rightarrow y^2⋮7\Rightarrow y^2⋮49\)(tính chất số chính phương)

Lại có:\(3y^2\le714\Rightarrow y^2\le238\)

\(\Rightarrow y^2\in\left\{49;196\right\}\)vì y là số chính phương

Với \(y^2=49\Rightarrow\orbr{\begin{cases}y=7\Rightarrow x=\pm9\\y=-7\Rightarrow7x^2=567\Rightarrow x^2=81\Rightarrow x=\pm9\end{cases}}\)

tương tự với \(y^2=196\)nhé

2 tháng 2 2019

Đệ hãu giải thích tính chất scp

2 tháng 2 2019

Lời giải:

Ta có: \(7x^2+3y^2=714\Rightarrow 7x^2=714-3y^2\leq 714\)

\(\Rightarrow x^2\leq 102\Rightarrow 0< x\leq 10(*)\) (do \(x\in\mathbb{Z}^+\) )

Mặt khác:

\(7x^2=714-3y^2=3(238-y^2)\vdots 3\)

\(\Rightarrow x^2\vdots 3\)

\(\Rightarrow x\vdots 3(**)\) (do 3 là số nguyên tố)

Từ \((*); (**)\Rightarrow x\in\left\{3;6;9\right\}\)

Nếu \(x=3\Rightarrow y=\sqrt{217}ot\in \mathbb{Z}^+\) (loại)

Nếu \(x=6\Rightarrow y=\sqrt{154}ot\in\mathbb{Z}^+\) (loại)

Nếu \(x=9\Rightarrow y=7\) (chọn

Vậy \((x,y)=(9,7)\)

3 tháng 2 2019

sao x \(\in\)Z dương vậy bn

23 tháng 7 2019

Ta có \(0< 3y^2+1< 4y^2+4\)

=> \(y^4< y^4+3y^4+1< \left(y^2+2\right)^2\)

=> \(y^4< x^4< \left(y^2+2\right)^2\)

Mà x,y nguyên

=> \(x^2=y^2+1\)

=> \(y^4+2y^2+1=y^4+3y^2+1\)

=> \(y=0\)=> x=0

Vậy (x,y)=(0;0)

8 tháng 6 2020

Ta có: 2x2y - 1 = x2 + 3y

<=> 4x2y - 2 - 2x2 - 6y = 0

<=> 2x2(2y - 1) - 3(2y - 1) = 5

<=> (2x2 - 3)(2y - 1) = 5 = 1.5

Lập bảng:

2x2 - 3 1 5
 2y - 1 5 1
  x\(\pm\sqrt{2}\)(loại)2
  y  1

Vậy nghiệm (x;y) của phương trình là (2; 1)

\(2x^2y-1=x^2+3y\)

\(\Leftrightarrow4x^2y-2=2x^2+6y\)

\(\Leftrightarrow\left(2y-1\right)\left(2x^2-3\right)=5\)

Đến đây đơn giản rồi :))))

14 tháng 11 2017

Ta có \(x^2+2xy+y^2+y^2=4-3y\)\(\Leftrightarrow\left(x+y\right)^2+y^2=4-3y\).
Suy ra \(4-3y>0\Leftrightarrow3y< 4\).
Do y nguyên dương nên \(y=1\).
Thay vào phương trình ta có: \(\left(x+1\right)^2+1^2=4-3.1\) \(\Leftrightarrow\left(x+1\right)^2=0\)\(\Leftrightarrow x+1=0\)\(\Leftrightarrow x=-1\). (Loại vì x nguyên dương).
Vậy không có giá trị nào của x thỏa mãn.

8 tháng 2 2019

\(x^2+2y^2+2xy+3y-4=0\)

\(\Leftrightarrow x^2+2xy+\left(2y^2+3y-4\right)=0\)

Coi phương trình trên có ẩn là x.

Phương trình có nghiệm khi \(\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)

\(\Leftrightarrow-y^2-3y+4\ge0\)\(\Leftrightarrow y^2+3y-4\le0\)

\(\Leftrightarrow\left(y-1\right)\left(y+4\right)\le0\Leftrightarrow-4\le y\le1\)

Thay vào từng giá trị nguyên của y để tìm x=)

9 tháng 10 2020

Với \(y\ne\frac{7}{2}\)(Do y nguyên) thì\(y^2+2xy-7x-12=0\Leftrightarrow x\left(7-2y\right)=y^2-12\Leftrightarrow x=\frac{y^2-12}{7-2y}\)

Vì x nguyên nên \(\frac{y^2-12}{7-2y}\)nguyên \(\Rightarrow y^2-12⋮2y-7\Rightarrow4y^2-48⋮2y-7\Rightarrow\left(2y-7\right)^2+14\left(2y-7\right)+1⋮2y-7\Rightarrow1⋮2y-7\)\(\Rightarrow2y-7\inƯ\left(1\right)=\left\{\pm1\right\}\Rightarrow\orbr{\begin{cases}2y-7=-1\\2y-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}y=3\\y=4\end{cases}}\)

* Với y = 3 thì x = -3

* Với y = 4 thì x = -4

Vậy phương trình có 2 cặp nghiệm nguyên (x; y) = (-3; 3) ; (-4; 4)

18 tháng 10 2020

Giúp mình bài này với nhé: tìm GTNN của thương của phép chia (4x^5+4x^4+4x^3-x-1):(2x^3+x-1), nhớ là đặt phép chia giùm mình luôn đừng ghi kết quả thôi nhé 

20 tháng 7 2017

câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp

còn câu 3 tui hông nghĩ ra....

21 tháng 7 2017

Thanks bạn