Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1)
(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)
\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)
Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)
Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.
Vậy phương trình trên không có nghiệm nguyên.
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
Ta có x^2−2y^2=1→x^2−1=2y^2
+ Nếu x chia hết cho 3 thì x=3 (vì x là số nguyên tố). Thay vào ta có
32−1=2y^2=8→y^2=4→y=2
+ Nếu x không chia hết cho 3 thì x có dạng 3k+1 hoặc 3k+2 (k ∈ N)
Với x=3k+1 thì 2y^2=x^2−1=(x−1)(x+1)=(3k+1−1)(3k+1+1)=3k(3k+2)⋮3
Với x= 3k+2 thì 2y^2=x^2−1=(x−1)(x+1)=(3k+2−1)(3k+2+1)=(3k+1)(3k+3)=3(3k+1)(k+1)⋮3
Như vậy với mọi x không chia hết cho 3 thì x^2−1⋮3→2y2⋮3. Mà (2;3)= 1
Nên y^2⋮3. Do 3 là số nguyên tố nên y⋮3. Mà y là số nguyên tố nên y=3
Thay y=3 vào ta có:
x^2−1=2.3^2=18→x^2=19→x=19−−√ (không tm)
Vậy chỉ có 1 cặp số (x;y) thỏa mãn là x=3; y=2
NHỚ TK MK NHALưu Đức Mạnh
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)< 3\)
\(\Leftrightarrow\left(x-y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2< 3\)
\(\Rightarrow\left(2x-1\right)^2< 3\) (1)
\(\Rightarrow\left(2x-1\right)^2=\left\{0;1\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\2x-1=1\\2x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow2y^2-2y< 1\Rightarrow\left(2y-1\right)^2< 3\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\) (giải như (1))
- Với \(x=1\Rightarrow2y^2+5< 4y+5\Rightarrow y^2-2y< 0\)
\(\Rightarrow y\left(y-2\right)< 0\Rightarrow0< y< 2\Rightarrow y=1\)
Vậy \(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(1;1\right)\)