K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Trả lời

Giả sử xyzx2+y2+z2>2xyz>2x≥y≥z⇒x2+y2+z2>2xy⇒z>2

Với z=3x2+y23⇒x2+y2⋮3 mà x,y là số nguyên tố nên chỉ có thể là x=y=3

Với z>3 vì x,y,z là các số nguyên tố khác 3 nên VT chia hết cho 3 đồng thời VP không chia hết cho 3 PT vô nghiệm

Vây PT chỉ có bộ nghiệm (x,y,z)=(3,3,3)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
28 tháng 8 2019

bằng 0 

13 tháng 3 2017

\(ĐK:\)  \(x,y,z\in Z^+\)

Không mất tính tổng quát, ta giả sử  \(1\le x\le y\le z\)  nên từ pt đã cho suy ra 

\(20\ge3x^2+x^3\ge3+x^3\)  

\(\Rightarrow\) \(x^3\le17\)  hay nói cách khác  \(x\le2\)  nên kết hợp với điều kiện ở trên suy ra  \(x\in\left\{1;2\right\}\)

Ta xét các trường hợp sau đây:

\(\Omega_1:\)

13 tháng 3 2017

Bạn xét các trường hợp và đưa ra nghiệm chính xác là  \(\left(x,y,z\right)=\left(2,2,2\right)\)

13 tháng 11 2019

272`6`54-543564396738