Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
Giả sử x≥y≥z⇒x2+y2+z2>2xy⇒z>2x≥y≥z⇒x2+y2+z2>2xy⇒z>2
Với z=3⇒x2+y2⋮3⇒x2+y2⋮3 mà x,y là số nguyên tố nên chỉ có thể là x=y=3
Với z>3 vì x,y,z là các số nguyên tố khác 3 nên VT chia hết cho 3 đồng thời VP không chia hết cho 3 PT vô nghiệm
Vây PT chỉ có bộ nghiệm (x,y,z)=(3,3,3)
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)