Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Do \(x=-4\)là một nghiệm của pt trên nên
Thay \(x=-4\)vào pt trên pt có dạng :
\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)
Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)
\(\Delta=9-4.\left(-28\right)=9+112=121>0\)
vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)
b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)
tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html
ta có : ax=-(x^2+1)
bx=-(x^2+1)
abx=-(x^2+1)
=>ax=bx=abx
nếu x<>0 thi a=b=ab
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2
nếu x=0 thi a=b=-1
thì 4/(ab)^2 -1/a^2-1/b^2=2
vậy 4/(ab)^2 -1/a^2-1/b^2=2
b/ x22 + x2 = x12 + x1
Chuyển thành --> x12 + x1 - x2 -x22 = 0
x12 -x22 ( Hằng đẳng thức) = (x1-x2)(x1+x2)
x1-x2=0
Có được (x1-x2)(x1+x2) -(x1+x2)=0
Thay vi - et vào ta có ( x1-x2) ( 2m) - ( 2m) =0
x1-x2=0
( x1-x2)2 =02
(x1+x2)2 -4x1.x2 =0
---> Thay vi-et vào được 4m2 -16=0 --> m= +2 và -2 ( xem điều kiện câu a để nhận hay loại)
a) Vì \(x=-2\)là một nghiệm của phương trình
\(\Rightarrow\)Thay \(x=-2\)vào pt(1) ta được:
\(\left(-2\right)^2-2.m.\left(-2\right)+4=0\)\(\Leftrightarrow4+4m+4=0\)
\(\Leftrightarrow4m+8=0\)\(\Leftrightarrow4m=-8\)\(\Leftrightarrow m=-2\)
Vậy \(m=-2\)
\(\left(x^2-4\right)^2+x=4\)
\(\Leftrightarrow\left(x^2-4\right)^2+x-4=0\)
\(\Leftrightarrow x^4-8x^2+16+x-4=0\)
\(\Leftrightarrow x^4-8x^2+x+12=0\)
\(\Leftrightarrow x^4+x^3-4x^2-x^3-x^2+4x-3x^2-3x+12=0\)
\(\Leftrightarrow x^2\left(x^2+x-4\right)-x\left(x^2+x-4\right)-3\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\\x^2+x-4=0\end{cases}}\)
\(\orbr{\begin{cases}\Delta_{x^2-x-3}=\left(-1\right)^2-4\cdot1\cdot\left(-3\right)=13\\\Delta_{x^2+x-4}=1^2-4\cdot1\cdot\left(-4\right)=17\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{1\pm\sqrt{13}}{2}\\x_{1,2}=\frac{-1\pm\sqrt{17}}{2}\end{cases}}\)