K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

5 tháng 5 2022

`a)` Thay `m = 1` vào ptr:

       `x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`

`<=>x^2 - 2x + 1 = 0`

`<=>(x - 1)^2=0`

`<=>x-1=0<=>x=1`

___________________________________________

`b)` Ptr có `2` nghiệm pb

`<=>\Delta' > 0`

`<=>b'^2-ac > 0`

`<=>(-m)^2-(m^2-m+1) > 0`

`<=>m^2-m^2+m-1 > 0`

`<=>m > 1`

5 tháng 5 2022

ko cảm ơn.-.

loading...  loading...  

10 tháng 4 2021

x4 - 2mx2 + m2 -3 = 0 (*)

đặt x2 = t

pt (*) <=> t2 -2mt + m2 - 3 = 0 (1)

để pt (*) có 3 nghiệm phân biệt thì (1) phải có 1 nghiệm dương  t1 > 0 và t2 = 0

thay t = 0 vào (1) ta được:

m2 - 3 = 0 <=> m = -\(\sqrt{3}\); m= \(\sqrt{3}\)

thay m = -\(\sqrt{3}\); m= \(\sqrt{3}\) vào (1) ta được:

m = -\(\sqrt{3}\) <=> t = -2 \(\sqrt{3}\); t =0 (loại)

Vậy m=\(\sqrt{3}\)=> t=2\(\sqrt{3}\)

=> x2=2\(\sqrt{3}\)(thỏa)

=> khi m=\(\sqrt{3}\), phương trình đã cho có 3 nghiệm

10 tháng 4 2021

2 nghiệm pb ạ

23 tháng 5 2018

a) khi m=-1. thế m =-1 vào phương trình

<=> x^4 + 2x^2 +1 -4=0

đặt t=x^2 (t>0)

<=> t^2 +2t -3=0

<=> t=1(nhận) và t=-3(loại t=-3 vì điều kiện t lớn hơn 0)

 ta có t=x^2  =>x=cộng trừ 1