Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,12x-180+10x-20+39x-2340+65x-4420=780
126x-6960=780
126x=7740
x=430/7
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
Bài 1:
\(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)=0\)
\(\Leftrightarrow x+66=0\)
\(\Leftrightarrow x=-66\)
b) \(\frac{m^2\left(\left(x+2\right)^2-\left(x-2\right)^2\right)}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m^2-4\right)x=m^2+4m+4\)
Để phương trình vô nghiệm thì \(\hept{\begin{cases}m^2-4=0\\m^2+4m+4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m=2\vee m=-2\\\left(m+2\right)^2\ne0\end{cases}}\Leftrightarrow m=2\)
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
a, \(\frac{x+16}{49}+\frac{x+18}{47}=\frac{x+20}{45}-1\)
\(\Leftrightarrow1+\frac{x+16}{49}+1+\frac{x+18}{47}=\frac{x+20}{45}-1+2\)
\(\Leftrightarrow\frac{x+16+49}{49}+\frac{x+18+47}{47}=\frac{x+20+45}{45}\)
\(\Leftrightarrow\frac{x+65}{49}+\frac{x+65}{47}-\frac{x+65}{45}=0\)
\(\Leftrightarrow\left(x+65\right)\left(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\right)=0\)
Ta có: \(\frac{1}{49}+\frac{1}{47}-\frac{1}{45}\)>0
\(\Rightarrow x+65=0\)
\(\Leftrightarrow x=-65\)
Vậy x = -65
b, \(\frac{x-69}{30}+\frac{x-67}{32}+\frac{x-65}{34}=\frac{x-63}{36}+\frac{x-61}{38}+\frac{x-59}{40}\)
\(\Leftrightarrow\frac{x-69}{30}-1+\frac{x-67}{32}-1+\frac{x-65}{34}-1+\frac{x-63}{36}-1+\frac{x-61}{38}-1+\frac{x-59}{40}-1\)
\(\Leftrightarrow\frac{x-99}{30}+\frac{x-99}{32}+\frac{x-99}{34}-\frac{x-99}{36}-\frac{x-99}{38}-\frac{x-99}{40}=0\)
\(\Leftrightarrow\left(x-99\right)\left(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\right)=0\)
Vì \(\frac{1}{30}+\frac{1}{32}+\frac{1}{34}-\frac{1}{36}-\frac{1}{38}-\frac{1}{40}\)>0
\(\Rightarrow x-99=0\)
\(\Leftrightarrow x=99\)
Vậy x =99
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
bài này bạn lấy các phân số nhân thêm với 1 rồi bỏ nhân tử chung ra ngoài
\(\frac{5}{x}\)+ \(\frac{4}{x+1}\)= \(\frac{3}{x+2}\)+ \(\frac{2}{x+3}\)
ĐKXĐ: x\(\ne\)0,-1,-2,-3
(=) \(\frac{5}{x}\)\(+1\)+\(\frac{4}{x+1}\)\(+1\)=\(\frac{3}{x+2}\)\(+1\)+\(\frac{2}{x+3}\)\(+1\)
(=) \(\frac{5}{x}\)\(+\)\(\frac{x}{x}\)\(+\)\(\frac{4}{x+1}\)\(+\)\(\frac{x+1}{x+1}\)=\(\frac{3}{x+2}\)\(+\)\(\frac{x+2}{x+2}\)\(+\)\(\frac{2}{x+3}\)\(+\)\(\frac{x+3}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)=\(\frac{5+x}{x+2}\)\(+\)\(\frac{5+x}{x+3}\)
(=) \(\frac{5+x}{x}\)\(+\)\(\frac{5+x}{x+1}\)\(-\)\(\frac{5+x}{x+2}\)\(-\)\(\frac{5+x}{x+3}\)\(=0\)
(=) \(\left(5+x\right)\)\(\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\)\(=0\)
(=) \(\orbr{\begin{cases}5+x=0\\\left(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\right)\end{cases}}=0\)(Loại vì \(\frac{1}{x}+\frac{1}{x+1}-\frac{1}{x+2}-\frac{1}{x+3}\)> \(0\))
(=) \(x=-5\)
Vậy phương trình có nghiệm là x = -5
* \(\frac{x^2+x+1}{x^2+x+2}=\frac{7}{6}\) <=> \(6\left(x^2+x+1\right)=7\left(x^2+x+2\right)\) <=> \(6x^2+6x+6=7x^2+7x+14\)
<=> \(7x^2+7x+14-6x^2-6x-6=0\) <=> \(x^2+x+8=0\)
\(\Delta=b^2-4ac=1^2-4\cdot1\cdot8=1-32=-31< 0\)
Vậy phương trình vô nghiệm
Ta có ; \(\frac{x+1}{65}+\frac{x+2}{66}=\frac{x+3}{67}+\frac{x+4}{68}\)
\(\Leftrightarrow\left(\frac{x+1}{65}-1\right)+\left(\frac{x+2}{66}-1\right)=\left(\frac{x+3}{67}-1\right)+\left(\frac{x+4}{68}-1\right)\)
\(\Leftrightarrow\frac{x-64}{65}+\frac{x-64}{66}=\frac{x-64}{67}+\frac{x-64}{68}\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)=0\)
Vì \(\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)\ne0\)nên \(x-64=0\Leftrightarrow x=64\)
Vậy nghiệm của phương trình ; \(S=\left\{64\right\}\)
\(\text{Ta có ; }\)\(\frac{x+1}{65}+\frac{x+2}{66}=\frac{x+3}{67}+\frac{x+4}{68}\)
\(\Leftrightarrow\left(\frac{x+1}{65}-1\right)+\left(\frac{x+2}{66}-1\right)=\)\(\left(\frac{x+3}{67}-1\right)+\left(\frac{x+4}{68}-1\right)\)
\(\Leftrightarrow\frac{x-64}{65}+\frac{x-64}{66}=\frac{x-64}{67}+\frac{x-64}{68}\)
\(\Leftrightarrow\left(x-64\right)\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)=0\)
\(\text{Vì}\)\(\left(\frac{1}{65}+\frac{1}{66}-\frac{1}{67}-\frac{1}{68}\right)\ne0\)\(\text{nên}\)\(x-64=0\Leftrightarrow x=64\)
\(\text{Vậy nghiệm của phương trình ; }S=\left\{64\right\}\)