Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, M(x) = 6x^3 + 2x^4 - x^2 + 3x^2 - 2x^3-x^4+1-4x^3
= (6x^3 -2x^3 -4x^3) +(2x^4 - x^4) -x^2 +1
= x^4 -x^2 +1
sắp xếp các hạng tử của đa thức theo lũy thừa giảm của biến:
-x^2+x^4+1
b, M(x) +N(x) = ( -x^2 +x^4+1) + ( -5x^3 + x^3 + 3x^2- 3)
=-x^2 +x^4+1-5x^3+x^3+3x^2-3
=(-x^2 +3x^2)-(5x^3 +x^3)+(1-3)+x^4
=2x^2-6x^3-2+x^4
M(x) -N(x)= (-x^2+x^4+1)-(-5x^3+x^3+3x^2-3)
= -x^2+x^4+1+5x^3+x^3+3x^2-3
=(-x^2+3x^2)+(5x^3+x^3)+(1-3)+x^4
=2x^2+6x^3-2+x^4
c,thay x=-1/2 vào đa thức M(x) ta được:
1/2^2+-1/2^4+1=1+(-2)+1=2
c) Tính giá trị của đa thức M (x) tại x = -\(\dfrac{1}{2}\)
Lời giải:
a)
Ta có: \(2^x-2^y=256=2^8\) (\(\Rightarrow x>y\) )
\(\Leftrightarrow 2^y(2^{x-y}-1)=2^8(*)\)
Vì \(x>y\Rightarrow x-y>0\Rightarrow 2^{x-y}\) chẵn. Do đó \(2^{x-y}-1\) lẻ. Kết hợp với
\((*)\Rightarrow 2^{x-y}-1=1\Leftrightarrow x-y=1\)
Khi đó: \(2^8=2^y(2^{x-y}-1)=2^y(2-1)=2^y\Rightarrow y=8\)
\(\Rightarrow x=y+1=9\)
PT có nghiệm \((x,y)=(9,8)\)
b) Giả sử \(x=y\Rightarrow 3^x+3^y= 2.3^x=3\vdots 2\) (vô lý). Do đó \(x\neq y\)
Không mất tính tổng quát giả sử \(x> y\).
PT tương đương: \(3^y(3^{x-y}+1)=3\) \((**)\)
Vì \(x>y\Rightarrow x-y\geq 1\Rightarrow 3^{x-y}\vdots 3\)
\(\Rightarrow 3^{x-y}+1\not\vdots 3\). Kết hợp với \((**)\Rightarrow 3^{x-y}+1=1\Leftrightarrow 3^{x-y}=0\) (vl)
Do đó PT vô nghiệm.
Câu c)
\((x-2)^2=3\Leftrightarrow \) \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x-2=-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow \)\(\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)
Câu d)
Nếu \(y=0\Rightarrow 2007^x=2000-2008^0=1999\Rightarrow x\not\in\mathbb{N}\)
Nếu \(y\geq 1.\)Ta thấy với mọi số tự nhiên \(x\in\mathbb{N}\Rightarrow 2007^x\) lẻ và \(2008^y\) chẵn
\(\Rightarrow 2007^x+2008^y\) lẻ. Mà 2000 là số chẵn, do đó pt vô nghiệm.
cảm ơn vì câu trả lời của bạn bạn có thể giúp mình câu hỏi dưới đây ko ạ cảm ơn bạn rất nhiều
bạn có thể giúp mình nhữngcâu sau được ko ạ????cảm ơn bạn rất nhiều
Câu 1:
a)
Ta có: \(P\left(x\right)=5x^4+3x^3-6x+x^2-5x^4+2x+8\)
\(=3x^3+x^2-4x+8\)
Ta có: \(Q\left(x\right)=2x^2-3x^3+12-3x^2+6x^3-4\)
\(=-3x^3-x^2+8\)
b) Ta có: P(x)+Q(x)
\(=3x^3+x^2-4x+8-3x^3-x^2+8\)
\(=-4x+16\)
Ta có: H(x)+P(x)=Q(x)
⇔H(x)=Q(x)-P(x)
\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-\left(3x^3+x^2-4x+8\right)\)
\(\Leftrightarrow H\left(x\right)=-3x^3-x^2+8-3x^3-x^2+4x-8\)
\(\Leftrightarrow H\left(x\right)=-6x^3-2x^2+4x\)
c) Đặt H(x)=0
\(\Leftrightarrow-6x^3-2x^2+4x=0\)
\(\Leftrightarrow x\left(-6x^2-2x+4\right)=0\)
\(\Leftrightarrow x\left(-6x^2-6x+4x+4\right)=0\)
\(\Leftrightarrow x\left[-6x\left(x+1\right)+4\left(x+1\right)\right]=0\)
\(\Leftrightarrow x\cdot\left(x+1\right)\cdot\left(-6x+4\right)=0\)
\(\Leftrightarrow-2\cdot\left(3x-2\right)\cdot x\cdot\left(x+1\right)=0\)
mà \(-2\ne0\)
nên \(\left[{}\begin{matrix}3x-2=0\\x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\x=0\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}\\x=0\\x=-1\end{matrix}\right.\)
Vậy: Nghiệm của đa thức H(x) lần lượt là 0;-1;\(\frac{2}{3}\)
Câu 2: Sửa đề: \(C=4x^2+7xy-3y^2\)
Ta có: A+B+C
=\(7x^2-12xy+9y^2+5-10x^2+7xy-5y^2+4x^2+7xy-3y^2\)
\(=x^2+2xy+y^2+5\)
\(=\left(x+y\right)^2+5>0\forall x,y\)(đpcm)
Bạn ơi bên trên mik viết nhầm câu 2 phần C = 4x\(^2\) + 7xy + 5y\(^2\)