Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
\(2014x^2+2012x-2=0\)
<=>\(2014x^2-2x+2014x-2=0\)
<=>\(\left(2014x^2-^{ }2014x\right)+\left(2x-2\right)\)\(=0\)
<=>\(2014x\left(x-1\right)+2\left(x-1\right)\)\(=0\)
<=>(2014x+2)(x-1)=0
<=>2014x+2=0 <=> x=-1/1007
x-1=0 x=1
kết luận........
\(H\left(x\right)=x+3\)
\(\Rightarrow H\left(x\right)=0\Leftrightarrow x+3=0\Rightarrow x=-3\)
\(T\left(x\right)=12-\dfrac{1}{3}x\)
\(\Rightarrow T\left(x\right)=0\Leftrightarrow12-\dfrac{1}{3}x=0\Rightarrow\dfrac{1}{3}x=12\Rightarrow x=36\)
\(B\left(x\right)=x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
\(\Rightarrow B\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)
\(C\left(x\right)=42x-4x^2=2x\left(21-2x\right)\)
\(\Rightarrow C\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\21-2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=10\dfrac{1}{2}\end{matrix}\right.\)
MONG CÂU TRẢ LỜI NÀY GIÚP BN
#chúc_bn_học_tốt
ta có:B(x)=x^3-7x-6=0
=>x^3 + x^2 - x^2 - 6x - x - 6
=> (x^3 + x^2) - (x^2 + x) - (6x + 6)
=> x^2(x + 1) - x(x + 1) - 6(x + 1)
=> (x + 1)(x^2 - x - 6)
=> (x + 1)(x^2 - 3x + 2x - 6)
=> (x + 1){(x^2 - 3x) + (2x - 6)}
=> (x + 1){(x(x - 3) + 2(x - 3)}
=> (x + 1)(x - 3)(x + 2)=0
=>x=-1;-2 và 3
Ta có :
\(P\left(x\right)=11-2x^3+4x^4+5x-x^4-2x\)
\(\Rightarrow P\left(x\right)=\left(4x^4-x^4\right)-2x^3+\left(5x-2x\right)+11\)
\(\Rightarrow P\left(x\right)=3x^4-2x^3+3x+11\)
\(Q\left(x\right)=2x^4-x+4-x^3+3x-5x^4+3x^3\)
\(\Rightarrow Q\left(x\right)=\left(2x^4-5x^4\right)+\left(3x^3-x^3\right)+\left(3x-x\right)+4\)
\(\Rightarrow Q\left(x\right)=-3x^4+2x^3+2x+4\)
\(H\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=3x^4-2x^3+3x+11+-3x^4+2x^3+2x+4\)
\(\Rightarrow H\left(x\right)=5x+15\)
\(\Rightarrow H\left(x\right)=5\left(x+3\right)\)
Xét \(H\left(x\right)=0\)
\(\Rightarrow5\left(x+3\right)=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
Vậy \(x=-3\)là nghiệm của đa thức \(H\left(x\right)\)
a
Vi x^2 luon luon > hoac =o voi moi x
ta chia ra lam 3 th
th1 x>0 x^2+4x>0+2015>0+2015
th2 x<0<2014 ta co x^2+4x+2015 cung >0
th3 X=0Vay A(x)=2015
b Lam tuong tu nhung x<0
a)ta có:A(x) = x2 +4x + 2015=0
denta:42-4(1.2015)=-8044
vì -8044<0
=>pt ko có nghiệm
xét -4x2 + 16 = 0
=>-4x2=-16
=>x2=4
=>x=2 hoặc -2
vậy x=2 hoặc -2 là nghiệm của đa thức
- 4x2 + 16 = 0
=> - ( 4x2 - 16 ) = 0
=> - ( 2x - 4 ) ( 2x + 4 ) = 0
Vậy x nhân 2 giá trị :
1) 2x - 4 = 0 =>x = 2
2) 2x + 4 = 0 => x = -2