K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a

Vi x^2 luon luon > hoac =o voi moi x

ta chia ra lam 3 th

th1   x>0 x^2+4x>0+2015>0+2015

th2   x<0<2014  ta co x^2+4x+2015 cung >0

th3  X=0Vay A(x)=2015

b Lam tuong tu nhung x<0

23 tháng 4 2016

a)ta có:A(x) = x+4x + 2015=0

denta:42-4(1.2015)=-8044

vì -8044<0

=>pt ko có nghiệm

14 tháng 5 2018

a ) Ta có :  \(A\left(x\right)=x^3+3x^2-4x-12\)

\(\Rightarrow A\left(2\right)=2^3+3.2^2-4.2-12\)

\(\Rightarrow A\left(2\right)=8+3.4-8-12\)

\(\Rightarrow A\left(2\right)=8+12-8-12\)

\(\Rightarrow A\left(2\right)=0\)

Vậy \(x=2\)là nghiệm của đa thức \(A\left(x\right)\)

\(B\left(x\right)=-2x^3+3x^2+4x+1\)

\(\Rightarrow B\left(2\right)=-2.2^3+3.2^2+4.2+1\)

\(\Rightarrow B\left(2\right)=-2.8+3.4+8+1\)

\(\Rightarrow B\left(2\right)=-16+12+8+1\)

\(\Rightarrow B\left(2\right)=5\ne0\)

Vậy \(x=2\)không là nghiệm của đa thức \(B\left(x\right)\)

b )     Tự làm nhé 

Chúc bạn học tốt !!! 

14 tháng 5 2018

a)   \(A\left(2\right)=2^3+3.2^2-4.2-12=0\)

=> \(x=2\)là nghiệm của đa thức  A(x)

     \(B\left(2\right)=-2.2^3+3.2^2+4.2+1=5\)

=>   \(x=2\)không là nghiệm của đa thức  B(x)

b)   \(A\left(x\right)+B\left(x\right)=\left(x^3+3x^2-4x-12\right)+\left(-2x^3+3x^2+4x+1\right)\)

                                    \(=-x^3+6x^2+13\)

    \(A\left(x\right)-B\left(x\right)=\left(x^3+3x^2-4x-12\right)-\left(-2x^3+3x^2+4x+1\right)\)

                                 \(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)

                                 \(=3x^3-8x+11\)

20 tháng 5 2021

a) Cho x2-1=0
            x2=1
            x= 1  hoặc -1

b)Cho P(x)=0
          -x2 + 4x - 5 = 0
          -x2 + 4x = 5
          -x   . x + 4x = 5
          x(-x+4) = 5

TH1: x= 5
TH2: -x+4 = 5
         -x= 1
          x=-1
xong bạn thay số rồi kết luận nhá

20 tháng 5 2021

a,\(x^2-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)

KL:...

b,\(P\left(x\right)=-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)

\(\Rightarrow VN\)

1 tháng 6 2020

a) K(x) = -4x2 - 2

\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)

\(-2< 0\)

=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )

b) Q(x) = 2(x+1)+ 7

\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)

7 > 0

=> 2(x+1)+ 7 > 0 => Vô nghiệm ( đpcm )

c) cái này mình chịu nha TvT

14 tháng 6 2017

a, \(-x^2-4x-2015\)

\(=-\left(x^2+4x+4+2011\right)\)

\(=-\left[\left(x+2\right)^2+2011\right]\)

\(=-\left(x+2\right)^2-2011\le-2011< 0\)

\(\Rightarrow\)Đa thức trên vô nghiệm ( đpcm )

Vậy...

b, \(x\left(x-1\right)+1=x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

\(\Rightarrow\)Đa thức trên vô nghiệm

Vậy...

14 tháng 6 2017

a)\(-x^2-4x-2015\)

\(=-x^2-4x-4-2011\)

\(=-\left(x^2+4x+4\right)-2011\)

\(=-\left(x+2\right)^2-2011< 0\) (vô nghiệm)

b)\(x\left(x-1\right)+1\)

\(=x^2-x+1\)

\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (vô nghiệm)

9 tháng 3 2018

a/ \(-x^2-4x-8=0\)

\(\Leftrightarrow-x^2-2x-2x-8=0\)

\(\Leftrightarrow-\left[x^2+2x+2x+8\right]=0\)

\(\Leftrightarrow-\left[x\left(x+2\right)+2\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)\left(x+2\right)+4\right]=0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]=0\)

Với mọi x ta có :

\(+,\left(x+2\right)^2\ge0\)

\(+,4>0\)

\(\Leftrightarrow\left(x+2\right)^2+4>0\)

\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]< 0\)

\(\Leftrightarrow-x^2-4x-8\) vô nghiệm

b/ \(2x^2+4x+7=0\)

\(\Leftrightarrow2x^2+2x+2x+7=0\)

\(\Leftrightarrow2\left(x^2+x+x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow2\left[x\left(x+1\right)+\left(x+1\right)+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]=0\)

\(\Leftrightarrow2\left(x+1\right)^2+5=0\)

Với mọi x ta có :

\(2\left(x+1\right)^2\ge0\)

\(5>0\)

\(\Leftrightarrow2\left(x+1\right)^2+5>0\)

\(\Leftrightarrow2x^2+4x+7\) vô nghiệm

21 tháng 4 2017

a) 4x2+4x+2

=4x2+2x+2x+2

=2x.(2x+1)+2x+1+1

=2x.(2x+1)+(2x+1)+1

=(2x+1)2+1

Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm

b) x2+x+1

\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm

Phần c để tớ nghĩ đã

mình không biết

22 tháng 8 2016

f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2

Ta có: x2>=0(với mọi x)

=>x2+1>=1(với mọi x)

=>(x2+1)2>0(với mọi x)

hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm

Vậy f(x) không có nghiệm