Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Ta có : \(A\left(x\right)=x^3+3x^2-4x-12\)
\(\Rightarrow A\left(2\right)=2^3+3.2^2-4.2-12\)
\(\Rightarrow A\left(2\right)=8+3.4-8-12\)
\(\Rightarrow A\left(2\right)=8+12-8-12\)
\(\Rightarrow A\left(2\right)=0\)
Vậy \(x=2\)là nghiệm của đa thức \(A\left(x\right)\)
\(B\left(x\right)=-2x^3+3x^2+4x+1\)
\(\Rightarrow B\left(2\right)=-2.2^3+3.2^2+4.2+1\)
\(\Rightarrow B\left(2\right)=-2.8+3.4+8+1\)
\(\Rightarrow B\left(2\right)=-16+12+8+1\)
\(\Rightarrow B\left(2\right)=5\ne0\)
Vậy \(x=2\)không là nghiệm của đa thức \(B\left(x\right)\)
b ) Tự làm nhé
Chúc bạn học tốt !!!
a) \(A\left(2\right)=2^3+3.2^2-4.2-12=0\)
=> \(x=2\)là nghiệm của đa thức A(x)
\(B\left(2\right)=-2.2^3+3.2^2+4.2+1=5\)
=> \(x=2\)không là nghiệm của đa thức B(x)
b) \(A\left(x\right)+B\left(x\right)=\left(x^3+3x^2-4x-12\right)+\left(-2x^3+3x^2+4x+1\right)\)
\(=-x^3+6x^2+13\)
\(A\left(x\right)-B\left(x\right)=\left(x^3+3x^2-4x-12\right)-\left(-2x^3+3x^2+4x+1\right)\)
\(=x^3+3x^2-4x-12+2x^3-3x^2-4x-1\)
\(=3x^3-8x+11\)
a) Cho x2-1=0
x2=1
x= 1 hoặc -1
b)Cho P(x)=0
-x2 + 4x - 5 = 0
-x2 + 4x = 5
-x . x + 4x = 5
x(-x+4) = 5
TH1: x= 5
TH2: -x+4 = 5
-x= 1
x=-1
xong bạn thay số rồi kết luận nhá
a,\(x^2-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}}\)
KL:...
b,\(P\left(x\right)=-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left[\left(x-2\right)^2+1\right]\le1\forall x\)
\(\Rightarrow VN\)
a) K(x) = -4x2 - 2
\(x^2\ge0\forall x\Rightarrow-4x^2\le0\forall x\)
\(-2< 0\)
=> -4x2 - 2 < 0 => Vô nghiệm ( đpcm )
b) Q(x) = 2(x+1)2 + 7
\(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\)
7 > 0
=> 2(x+1)2 + 7 > 0 => Vô nghiệm ( đpcm )
c) cái này mình chịu nha TvT
a, \(-x^2-4x-2015\)
\(=-\left(x^2+4x+4+2011\right)\)
\(=-\left[\left(x+2\right)^2+2011\right]\)
\(=-\left(x+2\right)^2-2011\le-2011< 0\)
\(\Rightarrow\)Đa thức trên vô nghiệm ( đpcm )
Vậy...
b, \(x\left(x-1\right)+1=x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức trên vô nghiệm
Vậy...
a)\(-x^2-4x-2015\)
\(=-x^2-4x-4-2011\)
\(=-\left(x^2+4x+4\right)-2011\)
\(=-\left(x+2\right)^2-2011< 0\) (vô nghiệm)
b)\(x\left(x-1\right)+1\)
\(=x^2-x+1\)
\(=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) (vô nghiệm)
a/ \(-x^2-4x-8=0\)
\(\Leftrightarrow-x^2-2x-2x-8=0\)
\(\Leftrightarrow-\left[x^2+2x+2x+8\right]=0\)
\(\Leftrightarrow-\left[x\left(x+2\right)+2\left(x+2\right)+4\right]=0\)
\(\Leftrightarrow-\left[\left(x+2\right)\left(x+2\right)+4\right]=0\)
\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]=0\)
Với mọi x ta có :
\(+,\left(x+2\right)^2\ge0\)
\(+,4>0\)
\(\Leftrightarrow\left(x+2\right)^2+4>0\)
\(\Leftrightarrow-\left[\left(x+2\right)^2+4\right]< 0\)
\(\Leftrightarrow-x^2-4x-8\) vô nghiệm
b/ \(2x^2+4x+7=0\)
\(\Leftrightarrow2x^2+2x+2x+7=0\)
\(\Leftrightarrow2\left(x^2+x+x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow2\left[x\left(x+1\right)+\left(x+1\right)+\dfrac{5}{2}\right]=0\)
\(\Leftrightarrow2\left[\left(x+1\right)^2+\dfrac{5}{2}\right]=0\)
\(\Leftrightarrow2\left(x+1\right)^2+5=0\)
Với mọi x ta có :
\(2\left(x+1\right)^2\ge0\)
Và \(5>0\)
\(\Leftrightarrow2\left(x+1\right)^2+5>0\)
\(\Leftrightarrow2x^2+4x+7\) vô nghiệm
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
f(x)=(2x4-x4)+(5x3-x3-4x3)+(3x2-x2)+1=x4+2x2+1=x4+x2+x2+1=x2(x2+1)+(x2+1)=(x2+1)(x2+1)=(x2+1)2
Ta có: x2>=0(với mọi x)
=>x2+1>=1(với mọi x)
=>(x2+1)2>0(với mọi x)
hay f(x)>0 với mọi x nên đa thức f(x) không có nghiệm
Vậy f(x) không có nghiệm
a
Vi x^2 luon luon > hoac =o voi moi x
ta chia ra lam 3 th
th1 x>0 x^2+4x>0+2015>0+2015
th2 x<0<2014 ta co x^2+4x+2015 cung >0
th3 X=0Vay A(x)=2015
b Lam tuong tu nhung x<0
a)ta có:A(x) = x2 +4x + 2015=0
denta:42-4(1.2015)=-8044
vì -8044<0
=>pt ko có nghiệm