Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
Bài 1:
a) Để 35 - 12n chia hết cho n thì 35 phải chia hết cho n
=> n \(\in\) Ư(35) = {1;5;7;35}
Vậy n \(\in\){1;5;7;35}
b) 16 - 3n = 28 - 12 - 3n = -3(n + 4) + 28
Để 16 - 3n chia hết cho n + 4 thì 28 phải chia hết cho n + 4
=> n + 4 \(\in\) Ư(28) = {1;2;4;7;14;28}
Nếu n + 4 = 1 => n = -3 (loại)
Nếu n + 4 = 2 => n = -2 (loại)
Nếu n + 4 = 4 => n = 0
Nếu n + 4 = 7 => n = 3
Nếu n + 4 = 14 => n = 10
Nếu n + 4 = 28 => n = 24
Vậy n \(\in\) {0;3;10;24}