Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(n^2+2n+7⋮n+2\)
\(\Rightarrow n\left(n+2\right)+7⋮n+2\)
Vì \(n\left(n+2\right)⋮n+2\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)\Rightarrow n+2\in\left\{1;7\right\}\Rightarrow n\in\left\{-1;5\right\}\)
Để \(n^2+1⋮n-1\)
=> \(n^2-1+2⋮n-1\)
\(\Rightarrow\left(n^2-n+n-1\right)+2⋮n-1\)
\(\Rightarrow\left[n\left(n-1\right)+\left(n-1\right)\right]+2⋮n-1\)
=> (n - 1)(n + 1) + 2\(⋮n-1\)
Vì (n - 1)(n + 1) \(⋮n-1\)
=> 2\(2⋮n-1\Rightarrow n-1\inƯ\left(2\right)\Rightarrow n-1\in\left\{1;2\right\}\Rightarrow n\in\left\{2;3\right\}\)
Để \(n^2+2n+6⋮n+4\)
=> \(n^2+4n-2n-8+14⋮n+4\)
=> \(n\left(n+4\right)-2\left(n+4\right)+14⋮n+4\)
=> \(\left(n-2\right)\left(n+4\right)+14⋮n+4\)
Vì \(\left(n-2\right)\left(n+4\right)⋮n+4\)
=> \(14⋮n+4\Rightarrow n+4\inƯ\left(14\right)\Rightarrow n+4\in\left\{1;2;7;14\right\}\Rightarrow n\in\left\{-3;-2;3;10\right\}\)
Để n2 + n + 1 \(⋮n+1\)
=> \(n\left(n+1\right)+1⋮n+1\)
Vì \(n\left(n+1\right)⋮n+1\)
=> \(1⋮n+1\Rightarrow n+1\inƯ\left(1\right)\Rightarrow n+1=1\Rightarrow n=0\)
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)
\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)
\(2n-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)
\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)
1, 3n +2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc ước của 5 là 1;-1;5;-5
=> n thuộc 2 ;0;6;-4;
\(\text{1,3n + 2 chia hết cho n - 1 }\)
= > 3n - 3 + 5 chia hết cho n - 1
= > 5 chia hết cho n - 1
= > n - 1 thuộc ước của 5 là : 1;-1;5;-5
= > n thuộc 2;0;6;-4;
b. Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath
10 \(⋮\)2n+1
=> 2n+1 \(\in\)Ư(10) ={ 1;2; 5; 10}
Vì 2n+1 là số lẻ nên 2n+1 \(\in\){ 1; 5}
=> 2n \(\in\){ 0; 4}
=> n \(\in\){ 0; 2}
Vậy...
b) 3n +1 \(⋮\)n-2
=> n-2 \(⋮\)n-2
=> (3n+1) -(n-2) \(⋮\)n-2
=> (3n-1) -3(n-2) \(⋮\)n-2
=> 3n-1 - 3n + 6 \(⋮\)n-2
=> 5\(⋮\)n-2
=> n-2 thuốc Ư(5) ={ 1;5}
=> n thuộc { 3; 7}
Vậy...
a) Vì n thuộc Z => 2n-1 thuộc Z
=> 2n-1 thuộc Ư (10)={-10;-5;-2;-1;1;2;5;10}
Ta có bảng giá trị
Vậy n={-2;0;3}
b) Ta có 3n+1=3(n-2)+7
Để 3n+1 chia hết cho n-2 thì 3(n-2)+7 chia hết cho n-2
Vì 3(n-2) chia hết cho n-2 => 7 chia hết cho n-2
n thuộc Z => n-2 thuộc Z
=> n-2 thuộc Ư (7)={-1;-7;1;7}
Ta có bảng
Vậy n={1;-5;3;9}