Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 2n+7=2(n+1)+5
để 2n+7 chia hết cho n+1 thì 5 phải chia hết cho n+1
=> n+1\(\in\) Ư(5) => n\(\in\){...............}
bạn tự tìm n vì mình chưa biết bạn có học số âm hay chưa
Từ bài 2-> 4 áp dụng như bài 1
Ta có 2n+7=2(n+1)+5
Vì 2(n+1
Do đó 2n + 7=2(n+1)+5 khi 5 chí hết cho n +1
Suy ra n+1 "thuộc tập hợp" Ư (5) = {1;5}
Lập bảng n+1 I 1 I 5
n I 0 I 4
Vậy n "thuộc tập hợp" {0;4}
1) 4n - 3 chia hết cho 2n + 1
4n + 2 - 5 chia hết cho 2n + 1
5 chia hết cho 2n + 1
2n + 1 thuộc U(5) = {-5;-1;1;5}
n thuộc {-3 ; -1 ; 0 ; 2}
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
n + 11 chia hết cho 5 + n
n + 5 + 6 chia hết cho 5 + n
5 + n thuộc U(6) = {-6;-3;-2;-1;1;2;3;6}
Mà n là số TN
Vậy n = 1
Tương tự
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
1, 3n +2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc ước của 5 là 1;-1;5;-5
=> n thuộc 2 ;0;6;-4;
\(\text{1,3n + 2 chia hết cho n - 1 }\)
= > 3n - 3 + 5 chia hết cho n - 1
= > 5 chia hết cho n - 1
= > n - 1 thuộc ước của 5 là : 1;-1;5;-5
= > n thuộc 2;0;6;-4;