Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n+3 chia hết cho n^2-7
=> n(n+3) chia hết cho n^2-7
=> n^2+3n chia hết cho n^2-7
=> n^2-7 + 3n+7 chia hết cho n^2-7
=> 3n+7 chia hết cho n^2-7
do 3n+9=3(n+3) chia hết cho n^2-7
=> 3n+9-3n-7 chia hết cho n^2-7
=> 2 chia hết cho n^2-7
=> n=3
thử lại thấy thỏa mãn!
b) ta có: 2n^2+5=2n^2+4n-4n-8+13=2n(n+2)-4(n+2)+13 chia hết cho n+2
=> 13 chia hết cho n+2
=> n+2=13 hoặc n+2=1
n+2=13 => n=11
n+2=1 => n=-1
a) ( n2 - 3 ).( n2 - 36 ) = 0
<=> ( n2 - 3 ).( n - 6).( n + 6 ) = 0
<=> \(\orbr{\begin{cases}n-6=0\\n+6=0\end{cases}}\) ( vì n2 - 3 luôn khác 0 và n thuộc Z )\(\Leftrightarrow\orbr{\begin{cases}n=6\\n=-6\end{cases}}\)
Vậy phương trình có tập nghiệm S = {-6;6}
b) ( n2 - 3 ).( n2 - 36 ) < 0
<=> \(\orbr{\begin{cases}n^2-3>0;n^2-36< 0\\n^2-3< 0;n^2-36>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}n^2>3;n^2< 36\\n^2< 3;n^2>36\left(voly\right)\end{cases}}\)
\(\Leftrightarrow3< n^2< 36\) . Mà n thuộc Z nên : \(n^2=4;9;16;25\)
\(\Leftrightarrow n=\pm2;\pm3;\pm4;\pm5\)
Vậy n = .................
c) Câu này làm tương tự câu a
\(a;\left(n^2-3\right)\left(n^2-36\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n^2=3\\n^2=36\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\pm\sqrt{3}\left(loại\right)\\n=\pm6\end{cases}}}\)
\(c;\left(n+3\right)\left(n-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n+3=0\\n-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}n=-3\\n=4\end{cases}}}\)
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)
Vậy...........................
\(n^2+1⋮n-1\)
\(\Rightarrow\left(n+1\right)\left(n-1\right)⋮n-1\)
\(\Rightarrow\left(n+1\right)⋮n-1\)
\(\Rightarrow\left(n-1\right)+2⋮n-1\)
\(\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left(2;0;4;-3\right)\)
Vậy..........................
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) Ta có:
17 chia hết cho n-3
=>n-3 thuộc Ư(17)
=>Ư(17)={-1;1;-17;17}
Ta có bảng sau:
n-3 | -1 | 1 | -17 | 17 |
n | 2 | 4 | -14 | 20 |
KL | tm | tm | loại | tm |
Vậy....
Dô câu hỏi tương tự đi bạn :) hi