Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
=>3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1=-5;-1;1;5
=>n=-4;0;2;6
b,3n.1=3n
=>3n+1 chia hết cho 3n
=>1 chia hết cho 3n(vô lí)
vậy không có n
a) Để \(H=\frac{9}{\sqrt{n}-5}\)là 1 số nguyên
\(\Rightarrow9⋮\sqrt{n}-5\Rightarrow\sqrt{n}-5\inƯ\left(9\right)=\left(\pm1;\pm3;\pm9\right)\)
Ta có bảng sau:
\(\sqrt{n}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
\(\sqrt{n}\) | 6 | 4 | 8 | 2 | 14 | -4 |
\(n\) | 2.44 | 2 | 2.828 | 1.41 | 3.74 | -2 |
Mà \(n\in Z\Rightarrow n\in\left(2;-2\right)\)
\(1.\frac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x\div\left(-3\right)^4=\left(-3\right)^3\)
\(\Rightarrow\left(-3\right)^x=\left(-3\right)^7\Rightarrow x=7\)
\(2.\sqrt{x-5}-4=5\Rightarrow\sqrt{x-5}=9\Rightarrow\sqrt{x-5}=\sqrt{81}\Rightarrow x-5=81\Rightarrow x=86\)
\(\)
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
\(E=\frac{n^2+n+1}{n+1}=\frac{\left(n^2+2n+1\right)-\left(n+1\right)+1}{n+1}\)
\(=\frac{\left(n+1\right)^2-\left(n+1\right)+1}{n+1}=\left(n+1\right)-1+\frac{1}{n+1}\)
Để E là số nguyên thì \(n+1\inƯ\left(1\right)\)
Bạn tự liệt kê :)
Để D nguyên thì
8n-5 chia hết cho 3n+2
=> 24n-15 chia hết cho 3n+2
=> 24n+16-31 chia hết cho 3n+2
Vì 24n+16 chia hết cho 3n+2
=> -31 chia hết cho 3n+2
=> 3n+2 thuộc Ư(31)
3n+2 | n |
1 | -1/3 |
-1 | -1 |
31 | 29/3 |
-31 | -11 |
Mà n nguyên
=> n \(\in\){-1; -11}
Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:
8n-5 chia hết cho d => 24n-15 chia hết cho d
3n+2 chia hết cho d => 24n+16 chia hết cho d
=> 24n+16-(24n-15) chia hết cho d
=> 31 chia hết cho d
Giả dử phân số rút gọn được
=> 3n+2 chia hết cho 31
=> 3n+2+31 chia hết cho 31
=> 3n+33 chia hết cho 31
=> 3(n+11) chia hết cho 31
=> n+11 chia hết cho 31
=> n = 31k-11
KL: Để D tối giản thì n \(\ne\)31k-11
\(\Rightarrow\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3n-3}{n-1}+\frac{5}{n-1}\)
\(\Rightarrow3+\frac{5}{n-1}\)
\(\Rightarrow n-1\inƯ_5\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\left[\begin{array}{nghiempt}n-1=-5\\n-1=-1\\n-1=1\\n-1=5\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}n=-4\\n=0\\n=2\\n=6\end{array}\right.\)
Vậy: Các giá trị nguyên tập hợp của n là:
\(n=-4;0;2;6\)
Đặt \(A=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
\(\Rightarrow A\in Z\Leftrightarrow3+\frac{5}{n-1}\in Z\Leftrightarrow\frac{5}{n-1}\in Z\Leftrightarrow5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{-1;-5;1;5\right\}\)
\(\Rightarrow n\in\left\{0;-4;2;6\right\}\)