K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

Do n + 3 và n + 120 đều là số chính phương nên

\(\begin{cases}n+3=a^2\\n+120=b^2\end{cases}\) \(\left(a;b\in N;a>1;b>11\right)\)

=> (n + 120) - (n + 3) = a2 - b2

=> a2 - b2 = n + 120 - n - 3

=> (a - b).(a + b) = 117

=> a - b và a + b cùng lẻ mà a - b < a + b; a + b > 12

=> \(\begin{cases}a-b=1\\a+b=117\end{cases}\) hoặc \(\begin{cases}a-b=3\\a+b=39\end{cases}\) hoặc \(\begin{cases}a-b=9\\a+b=13\end{cases}\)

Các cặp giá trị (a;b) tương ứng là: (58;59) ; (18;21) ; (2;11)

Các giá trị n tương ứng là: 3361; 321; 1

Vậy \(n\in\left\{3361;321;1\right\}\)

 

25 tháng 10 2016

các bạn làm ơn giúp mk với mk đang gấp lắmkhocroikhocroi

26 tháng 10 2016

các bn làm ơn giúp mk với mk đang gấp lắm khocroi

26 tháng 10 2016

dài lắm, ko làm đâu

26 tháng 10 2016

a) 172123=(1724)30.1723

Ta thấy 1724 có tận cùng bằng 6 => (1724)30 có tận cùng bằng 6

1723 có tận cùng bằng 8

=> 172123 có tận cùng bằng 8

Mình giải một dạng thôi ;

2) \(3^x+3^{x+1}=36\\ \Rightarrow3^x\left(1+3\right)=36\\ \Rightarrow3^x=9\\ \Rightarrow x=2\)

b) \(2^x\left(1+2+2^2+2^3\right)=120\\ \Rightarrow2^x=8\\ \Rightarrow x=3\)

c) Khó

 

25 tháng 10 2016

các bn giúp mk với

 

13 tháng 7 2017

=> n+5 và n+30 là 2 số chình phương liền nhau:

Ta có: a2-b2= 25

=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:

=>(b+1-b)(b+1+b )=25

=>2b=24 => b=12; => a=13

=> a2=169; b2=144

=>n= 144-5=169-30=139;

CHÚC BẠN HỌC TỐT..........

13 tháng 7 2017

Với n+5 và n+30 là số chính phương

\(\left\{{}\begin{matrix}n+5=a^2\\n+30=b^2\end{matrix}\right.\) \(\Rightarrow n+5-n-30=a^2-b^2=\left(a-b\right)\left(a+b\right)=-25\)

Mà -25=-5.5=-1.25=-25.1


Giờ bn lập bảng các gt của a và b là đc

NM
2 tháng 8 2021

giả sử :

\(\hept{\begin{cases}a^2=n+5\\b^2=n+30\end{cases}\Rightarrow b^2-a^2=25}\) mà rõ ràng a,b là hai số tự nhiên và a<b

nên ta có : \(\left(b-a\right)\left(b+a\right)=5^2\Rightarrow\hept{\begin{cases}b-a=1\\b+a=25\end{cases}\Rightarrow\hept{\begin{cases}a=12\\b=13\end{cases}\Rightarrow}n=139}\)

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12