K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

Ta có : n + 8 chia hết cho n + 3

Mà : n + 3 chia hết cho n + 3

=> ( n + 8 ) - ( n + 3 ) chia hết cho n + 3

=> n + 8 - n - 3 chia hết cho n + 3

=> 5 chia hết cho n + 3 

Mà : n \(\ge\) 3 

=> n + 3 = 5

=> n = 5 - 3

=> n = 2

Vậy n = 2

18 tháng 10 2016

Để n+8 chia hết cho n+3 thì n = 2

19 tháng 3 2018

Xét các giá trị \(n=0;1\) không thỏa mãn

Xét n là số lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow3^n-1=3^{2k+1}-1=9^k.3-1=9^k.3-3+2\)

\(=3\left(9^k-1\right)+2\)

Ta có : \(9^k-1⋮9-1\) hay \(9^k-1⋮8\) \(\Rightarrow3\left(9^k-1\right)+2\) chia cho 8 dư 2 (loại)

Xét n là số 8 \(\Rightarrow n=2k\)

\(\Rightarrow3^n-1=3^{2k}-1=9^k-1⋮8\forall k\in N\)

Vậy \(3^n-1⋮8\) khi n chẵn và \(n\ge2\)

19 tháng 3 2018

n=2 nhé bạn

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

NM
25 tháng 2 2021

ta có 

\(n^5+1=n^5+n^2-n^2+1=n^2\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1\)

Khi \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\)

mà \(n^2-n+1>n-1\Rightarrow\left(n-1\right)\left(n+1\right)< n^3+1\)\(\)

\(\Rightarrow\orbr{\begin{cases}n^3+1=1\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)

10 tháng 12 2016

a/ Với n = 2k thì

\(3^n-1=3^{2k}-1=9^k-1=\left(9-1\right)\left(9^{k-1}+9^{k-2}...\right)=8\left(9^{k-1}+9^{k-2}...\right)\)

Chia hết cho 8

Với n = 2k + 1 thì

\(3^n-1=3^{2k+1}-1=3.3^{2k}-1=3\left(3^{2k}-1\right)+2\)

Chia 8 dư 2

Vậy vơi mọi n tự nhiên chẵn thì \(3^n-1\)chia hết cho 8

Câu còn lại làm tương tự

13 tháng 7 2018

1/ Câu hỏi của Lý Khánh Linh - Toán lớp 8 - Học toán với OnlineMath

2/

Đặt \(n^2+4n+2013=m^2\left(m\in N\right)\)

\(\Rightarrow\left(n^2+4n+4\right)+2009=m^2\)

\(\Rightarrow m^2-\left(n+2\right)^2=2009\)

\(\Rightarrow\left(m+n+2\right)\left(m-n-2\right)=2009\)

Vì \(m,n\in N\Rightarrow m+n+2;m-n-2\in N\Rightarrow m+n+2>m-n-2\)

\(\Rightarrow\hept{\begin{cases}m+n+2=2009\\m-n-2=1\end{cases}\Rightarrow\hept{\begin{cases}m+n=2007\\m-n=3\end{cases}}\Rightarrow\hept{\begin{cases}m=1005\\n=1002\end{cases}}}\)

Vậy n = 1002

13 tháng 7 2018

các bạn thay n2 ở câu 1 = n3 cho mk nhé