Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n+3⋮n\cdot n-7\)
\(\Rightarrow n+3⋮n^2-7\)
\(\Rightarrow(n+3)(n+3)⋮n^2-7\)
\(\Rightarrow n^2+9⋮n^2-7\)
\(\Rightarrow n^2-7-2⋮n^2-7\)
Mà n2 - 7 chia hết cho n2 - 7
=> \(n^2-7\inƯ(2)\)
\(\Rightarrow n^2-7\in\left\{\pm1;\pm2\right\}\)
Lập bảng :
n2 - 7 | 1 | -1 | 2 | -2 |
n | \(\hept{\begin{cases}-\sqrt{8}\\\sqrt{8}\end{cases}}\)\((\)loại\()\) | \(\hept{\begin{cases}-\sqrt{6}\\\sqrt{6}\end{cases}}\)\((\)loại\()\) | \(\left\{3;-3\right\}\)\((\)chọn\()\) | \(\hept{\begin{cases}-\sqrt{5}\\\sqrt{5}\end{cases}}\)\((\)loại\()\) |
Vậy \(n\in\left\{3;-3\right\}\)
a) Để 2n + 1 chia hết cho n - 5
<=> n + n - 5 - 5 + 11 chia hết cho n - 5
<=> ( n - 5 ) + ( n - 5 ) + 11 chia hết cho n - 5
=> 11 chia hết cho n - 5
<=> n - 5 là ước của 11
=> Ư(11) = ( 1;11 )
ta có n - 5 = 1 => n = 6 (TM)
n - 5 = 11 => n = 16 (TM)
Vậy n = 6;16
b) 3n - 5 chia hết cho n - 2
Để 3n - 5 chia hết cho n - 2
<=>n + n + n - 2 - 2 - 2 + 1 chia hết cho n - 2
<=>( n - 2 ) + ( n - 2 ) + ( n - 2 ) + 1 chia hết cho n - 2
=> 1 chia hết cho n - 2
<=>n - 2 là ước của 1
=> Ư(1) = 1
ta có n - 2 = 1 => n = 3 (TM)
Vậy n = 3
c) n.n + 5.n - 13 chia hết cho n + 2
<=>2.n + 5.n -13 chia hết cho n + 2
<=>7.n - 13 chia hết cho n + 2
Để 7n -13 chia hết cho n + 2
<=>n+n+n+n+n+n+n+2+2+2+2+2+2+2+1 chia hết cho n+2
<=>(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+(n+2)+1chia hết cho n+2
<=>1 chia hết cho n + 2
<=>n+2 là ước của 1
=>Ư(1) = 1
ta có n + 2 = 1 => n = ( - 1 ) (ktm)
vậy n = - 1
1)
Ta có 5n-1=5n+10-11=5(n+2)-11
Vì 5(n+2) chia hết cho (n+2)
Để [5(n+2)-11] chia hết cho (n+2)<=>11 chia hết cho (n+2)<=>(n+2) thuộc Ư(11)
Ta có Ư(11)={1;11;-1;-11}
Ta có bảng giá trị sau
(n+2) | -11 | -1 | 1 | 11 |
n | -13 | -3 | -1 | 9 |
Vậy n thuộc{-13;-3;-1;9} thì 5n-1 chia hết cho n+2
3)3n chia hết cho n-1
Ta có 3n=3n-3+3=3(n-1)+3
Vì 3(n-1) chia hết cho (n-1)
Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)
<=>(n-1) thuộc Ư(3)
Ư(3)={1;3;-1;-3}
Ta có bảng giá trị sau
n-1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Vậy n thuộc{-2;0;2;4} thì 3n chia hết cho n-1
Câu 2 mình k bt nha
n.n+2 \(⋮\)n+1
=>\(n^2\)+2\(⋮\)n+1
=>\(n^2\)+2-(n+1)\(⋮\)n+1
=>\(n^2\)+2-n(n+1)\(⋮\)n+1
=>\(n^2\)+2-\(n^2\)-n\(⋮\)n+1
=>2-n\(⋮\)n+1
=>2-n+n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={\(\mp\)1;\(\mp\)3}
=>n\(\in\){0;-2;2;-4}
Vậy n\(\in\){0;2;-2;-4} thì n.n+2 \(⋮\)n+1
vì n.n+2chia hết cho n+1
ta có:
n.n+2=n^2 +2 =n.(n+1)-n +2=n.(n+1)-(n+1)+1 chia hết cho n+1
mà n.(n+1)-(n+1)chia hết cho n+1
=> 1chia hết cho n+1
=> n+0