Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)
( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )
\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )
\(\Rightarrow n\in\left\{0;1\right\}\)
( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )
- \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Để A nguyên thì \(\frac{21}{n-4}\) nguyên
=>21 chia hết cho n-4
=>n-4\(\in\)Ư(21)
=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)
- \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)
Để B nguyên thì \(\frac{8}{2n-1}\) nguyên
=>8 chia hết cho 2n-1
=>2n-1\(\in\)Ư(8)
=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)
=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)
Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)
Từ (1) và (2) => n=1 thì A và B nguyên
n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)
\(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)
Kết luận:n=1 thì A=-4 và B=11
Ta thấy :
36n-1 - k . 33n-2 + 1 ⋮ 7 <=> 9 . ( 36n-1 - k . 33n-2 + 1 ) ⋮ 7
<=> 36n+1 - k . 33n + 9 ⋮ 7
Vì 36n+1 ≡ 3 ( mod 7 ) , suy ra 36n+1 + 9 ≡ 5 ( mod 7 )
Do đó để 36n+1 - k . 3 + 9 ⋮ 7 thì k . 33n ≡ 5 ( mod 7 )
Từ đó ta chứng minh được : Nếu n chẵn thì k ≡ 5 ( mod 7 ) , còn nếu lẻ thì k ≡ -5 ( mod 7 )
\(6n-1⋮n-1\)
\(\Rightarrow6.\left(n-1\right)+5⋮n-1\)
MÀ \(6.\left(n-1\right)⋮n-1\)\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA có bảng sau :
Vậy n \(\in\left\{2;0;6;-4\right\}\)