Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
a, gọi ước chung lơn nhất của .... là d
4n+3 chia hết cho d
2n+ 3 chia hết cho d
=> 2(2n+3) chia hết cho d
=> 4n+5 chia hết cho d
=> (4n+5)-(4n+3) chia hết cho d
=> 2 chia hết cho d
=> d= 1,2
mà 2n+3 là số lẻ ( ko chia hết cho 2)
=> d= 1
vây ......
n=1 nhé bạn vì2*1+1=3 là số nguyên tố ; 9*1+4=13 là snt
vậy n=1 . cho mk 1 ticknhes
Lời giải:
Gọi $d=ƯCLN(2n+1, 9n+4)$
$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$
$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $2n+1, 9n+4$ nguyên tố cùng nhau với mọi $n$
$\Rightarrow$ mọi số tự nhiên $n$ đều thỏa mãn yêu cầu.
a) Gọi ƯCLN (n + 2; n + 3) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
tạm làm phần a cho còn lại đang nghĩ
Đặt (9n+24, 2n+4) =d
=> 9n+24 chia hết cho d => 18n +48 chia hết cho d
2n +4 chia hết cho d => 18n +36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc {1, 2, 3, 4, 6, 12}
Để 9n +24 và 2n +4 là hai số nguyên tố cùng nhau => d=1 => d không chia hết cho 2 và d không chia hết cho 3
+) d không chia hết cho 2
=> 9n +24 không chia hết cho 2=> 9n không chia hết cho 2=> n không chia hết cho 2 => n=2k+1, k thuộc Z
+) d không chia hết cho 3
=> 2n+4 không chia hết cho 3 => 2(n+2) không chia hết cho 3 => n+2 không chia hết cho 3 => n-1 không chia hết cho 3 => n khác 3h+1, h thuộc Z
Em làm tiếp nhé!
đặt ( 9n + 24 , 2n + 4 ) = d
=> 9n + 24 chia hết cho d => 18n + 48 chia hết cho d
2n + 4 chia hết cho d => 18n + 36 chia hết cho d
=> 12 chia hết cho d
=> d thuộc { 1,2,3,4,6,12}
để 9n + 24 và 2n + 4 là 2 số nguyên tố cùng nhau => d = 1 => d không chia hết cho 2 và d không chia hết cho 3
+, d không chia hết cho 2
=> 9n + 24 không chia hết cho 2 => 9n không chia hết cho 2 => n không chia hết cho 2 => n = 2k + 1 , k thuộc Z
+, d không chia hết cho 3
=> 2n + 4 không chia hết cho 3 => 2 (n + 2 ) không chia hết cho 3 => n + 2 không chia hết cho 3 => n - 1 không chia hết cho 3 => n khác 3h + 1 , h thuộc Z
còn lại bn tuej lm nhé